Update app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ st.markdown(
|
|
25 |
st.markdown(
|
26 |
f"""
|
27 |
<div style="text-align: center;">
|
28 |
-
<p
|
29 |
</div>
|
30 |
""",
|
31 |
unsafe_allow_html=True
|
@@ -48,30 +48,17 @@ st.image("https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition
|
|
48 |
|
49 |
# Additional Information for Sample Prediction
|
50 |
st.write("π To make a sample prediction, you can refer to the training dataset information available in the sidebar or input the information of the employee whose attrition you want to predict.")
|
|
|
51 |
|
52 |
# About Section with Style
|
53 |
st.sidebar.title("βΉοΈ About")
|
54 |
st.sidebar.info(
|
55 |
"This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
|
56 |
-
"It utilizes a machine learning model trained on an employee attrition dataset."
|
57 |
)
|
58 |
|
59 |
# Define the Streamlit app
|
60 |
def main():
|
61 |
-
st.title("Employee Attrition Prediction App π΅οΈββοΈ")
|
62 |
-
st.sidebar.title("Model Settings βοΈ")
|
63 |
-
|
64 |
-
# Sidebar inputs
|
65 |
-
with st.sidebar.expander("View Unique Values π"):
|
66 |
-
st.write("Unique values for each feature:")
|
67 |
-
for column, values in unique_values.items():
|
68 |
-
st.write(f"- {column}: {values}")
|
69 |
-
|
70 |
-
# Main content
|
71 |
-
st.write("Welcome to the Employee Attrition Prediction App! π")
|
72 |
-
st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
|
73 |
-
st.write("Please provide the following information to make a prediction:")
|
74 |
-
|
75 |
# Define layout with three columns
|
76 |
col1, col2, col3 = st.columns(3)
|
77 |
|
|
|
25 |
st.markdown(
|
26 |
f"""
|
27 |
<div style="text-align: center;">
|
28 |
+
<p>Welcome to the Employee Attrition Prediction App! π</p>
|
29 |
</div>
|
30 |
""",
|
31 |
unsafe_allow_html=True
|
|
|
48 |
|
49 |
# Additional Information for Sample Prediction
|
50 |
st.write("π To make a sample prediction, you can refer to the training dataset information available in the sidebar or input the information of the employee whose attrition you want to predict.")
|
51 |
+
st.write("Please provide the following information to make a prediction:")
|
52 |
|
53 |
# About Section with Style
|
54 |
st.sidebar.title("βΉοΈ About")
|
55 |
st.sidebar.info(
|
56 |
"This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
|
57 |
+
"It utilizes a CatBoost machine learning model trained on an employee attrition dataset."
|
58 |
)
|
59 |
|
60 |
# Define the Streamlit app
|
61 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# Define layout with three columns
|
63 |
col1, col2, col3 = st.columns(3)
|
64 |
|