rasmodev commited on
Commit
8748300
Β·
verified Β·
1 Parent(s): b50e0e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -16
app.py CHANGED
@@ -25,7 +25,7 @@ st.markdown(
25
  st.markdown(
26
  f"""
27
  <div style="text-align: center;">
28
- <p>πŸ‘‹ Welcome to the Employee Attrition Prediction App!</p>
29
  </div>
30
  """,
31
  unsafe_allow_html=True
@@ -48,30 +48,17 @@ st.image("https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition
48
 
49
  # Additional Information for Sample Prediction
50
  st.write("πŸ“Š To make a sample prediction, you can refer to the training dataset information available in the sidebar or input the information of the employee whose attrition you want to predict.")
 
51
 
52
  # About Section with Style
53
  st.sidebar.title("ℹ️ About")
54
  st.sidebar.info(
55
  "This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
56
- "It utilizes a machine learning model trained on an employee attrition dataset."
57
  )
58
 
59
  # Define the Streamlit app
60
  def main():
61
- st.title("Employee Attrition Prediction App πŸ•΅οΈβ€β™‚οΈ")
62
- st.sidebar.title("Model Settings βš™οΈ")
63
-
64
- # Sidebar inputs
65
- with st.sidebar.expander("View Unique Values πŸ”"):
66
- st.write("Unique values for each feature:")
67
- for column, values in unique_values.items():
68
- st.write(f"- {column}: {values}")
69
-
70
- # Main content
71
- st.write("Welcome to the Employee Attrition Prediction App! πŸš€")
72
- st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
73
- st.write("Please provide the following information to make a prediction:")
74
-
75
  # Define layout with three columns
76
  col1, col2, col3 = st.columns(3)
77
 
 
25
  st.markdown(
26
  f"""
27
  <div style="text-align: center;">
28
+ <p>Welcome to the Employee Attrition Prediction App! πŸš€</p>
29
  </div>
30
  """,
31
  unsafe_allow_html=True
 
48
 
49
  # Additional Information for Sample Prediction
50
  st.write("πŸ“Š To make a sample prediction, you can refer to the training dataset information available in the sidebar or input the information of the employee whose attrition you want to predict.")
51
+ st.write("Please provide the following information to make a prediction:")
52
 
53
  # About Section with Style
54
  st.sidebar.title("ℹ️ About")
55
  st.sidebar.info(
56
  "This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
57
+ "It utilizes a CatBoost machine learning model trained on an employee attrition dataset."
58
  )
59
 
60
  # Define the Streamlit app
61
  def main():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  # Define layout with three columns
63
  col1, col2, col3 = st.columns(3)
64