Update app.py
Browse files
app.py
CHANGED
@@ -56,14 +56,6 @@ def main():
|
|
56 |
|
57 |
# Predict button
|
58 |
if st.button("Predict"):
|
59 |
-
# Convert numerical features to strings
|
60 |
-
age = str(age)
|
61 |
-
monthly_income = str(monthly_income)
|
62 |
-
num_companies_worked = str(num_companies_worked)
|
63 |
-
percent_salary_hike = str(percent_salary_hike)
|
64 |
-
training_times_last_year = str(training_times_last_year)
|
65 |
-
years_since_last_promotion = str(years_since_last_promotion)
|
66 |
-
years_with_curr_manager = str(years_with_curr_manager)
|
67 |
|
68 |
# Create a DataFrame to hold the user input data
|
69 |
input_data = pd.DataFrame({
|
@@ -92,15 +84,6 @@ def main():
|
|
92 |
# Make predictions
|
93 |
prediction = model.predict(input_data)
|
94 |
probability = model.predict_proba(input_data)[:, 1]
|
95 |
-
|
96 |
-
# Convert integer inputs to integers
|
97 |
-
age = int(age)
|
98 |
-
monthly_income = int(float(monthly_income))
|
99 |
-
num_companies_worked = float(num_companies_worked)
|
100 |
-
percent_salary_hike = int(percent_salary_hike)
|
101 |
-
training_times_last_year = int(training_times_last_year)
|
102 |
-
years_since_last_promotion = int(years_since_last_promotion)
|
103 |
-
years_with_curr_manager = int(years_with_curr_manager)
|
104 |
|
105 |
# Display characteristic-based recommendations
|
106 |
st.subheader("Suggestions for retaining the employee:")
|
|
|
56 |
|
57 |
# Predict button
|
58 |
if st.button("Predict"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Create a DataFrame to hold the user input data
|
61 |
input_data = pd.DataFrame({
|
|
|
84 |
# Make predictions
|
85 |
prediction = model.predict(input_data)
|
86 |
probability = model.predict_proba(input_data)[:, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Display characteristic-based recommendations
|
89 |
st.subheader("Suggestions for retaining the employee:")
|