Update app.py
Browse files
app.py
CHANGED
@@ -34,19 +34,14 @@ st.image("https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition
|
|
34 |
|
35 |
# Link to Detailed Article on Employee Attrition
|
36 |
st.markdown("๐ **Learn more about employee attrition from [Academy to Innovate HR (AIHR)](https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition.png)**")
|
37 |
-
|
38 |
st.markdown("---")
|
39 |
|
40 |
-
# Display an icon representing employee attrition
|
41 |
-
st.markdown('<i class="fas fa-user-slash"></i> Employee Attrition', unsafe_allow_html=True)
|
42 |
-
|
43 |
-
|
44 |
# Additional Information for Sample Prediction
|
45 |
st.write("๐ To make a prediction, input the information of the employee whose attrition you want to predict.")
|
46 |
st.write("Please provide the following information to make a prediction:")
|
47 |
|
48 |
# About Section with Style
|
49 |
-
st.sidebar.title("
|
50 |
st.sidebar.info(
|
51 |
"This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
|
52 |
"It utilizes a CatBoost machine learning model trained on an employee attrition dataset."
|
@@ -124,6 +119,13 @@ def main():
|
|
124 |
# Make predictions
|
125 |
prediction = model.predict(input_data)
|
126 |
probability = model.predict_proba(input_data)[:, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Display prediction probability
|
129 |
if prediction[0] == 1:
|
|
|
34 |
|
35 |
# Link to Detailed Article on Employee Attrition
|
36 |
st.markdown("๐ **Learn more about employee attrition from [Academy to Innovate HR (AIHR)](https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition.png)**")
|
|
|
37 |
st.markdown("---")
|
38 |
|
|
|
|
|
|
|
|
|
39 |
# Additional Information for Sample Prediction
|
40 |
st.write("๐ To make a prediction, input the information of the employee whose attrition you want to predict.")
|
41 |
st.write("Please provide the following information to make a prediction:")
|
42 |
|
43 |
# About Section with Style
|
44 |
+
st.sidebar.title("About")
|
45 |
st.sidebar.info(
|
46 |
"This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
|
47 |
"It utilizes a CatBoost machine learning model trained on an employee attrition dataset."
|
|
|
119 |
# Make predictions
|
120 |
prediction = model.predict(input_data)
|
121 |
probability = model.predict_proba(input_data)[:, 1]
|
122 |
+
|
123 |
+
# Display predicted attrition status
|
124 |
+
st.subheader("Predicted Attrition Status ๐ฎ")
|
125 |
+
if prediction[0] == 1:
|
126 |
+
st.error("Employee is predicted to leave (Attrition = Yes)")
|
127 |
+
else:
|
128 |
+
st.success("Employee is predicted to stay (Attrition = No)")
|
129 |
|
130 |
# Display prediction probability
|
131 |
if prediction[0] == 1:
|