|
import pandas as pd |
|
import streamlit as st |
|
import numpy as np |
|
import pickle |
|
import catboost |
|
from sklearn.impute import SimpleImputer |
|
import requests |
|
|
|
|
|
|
|
|
|
with open("model_and_key_components.pkl", "rb") as f: |
|
components = pickle.load(f) |
|
|
|
|
|
dt_model = components["model"] |
|
unique_values = components["unique_values"] |
|
|
|
|
|
st.image("https://i.ytimg.com/vi/WULwst0vW8g/maxresdefault.jpg") |
|
st.title("Income Prediction App") |
|
|
|
|
|
st.sidebar.header("Description of the Required Input Fields") |
|
st.sidebar.markdown("**Age**: Enter the age of the individual (e.g., 25, 42, 57).") |
|
st.sidebar.markdown("**Gender**: Select the gender of the individual (e.g., Male, Female).") |
|
st.sidebar.markdown("**Education**: Choose the highest education level of the individual (e.g., Bachelors Degree, High School Graduate, Masters Degree).") |
|
st.sidebar.markdown("**Worker Class**: Select the class of worker for the individual (e.g., Private, Government, Self-employed).") |
|
st.sidebar.markdown("**Marital Status**: Choose the marital status of the individual (e.g., Married, Never married, Divorced).") |
|
st.sidebar.markdown("**Race**: Select the race of the individual (e.g., White, Black, Asian-Pac-Islander).") |
|
st.sidebar.markdown("**Hispanic Origin**: Choose the Hispanic origin of the individual (e.g., Mexican, Puerto Rican, Cuban).") |
|
st.sidebar.markdown("**Full/Part-Time Employment**: Select the employment status as full-time or part-time (e.g., Full-time schedules, Part-time schedules).") |
|
st.sidebar.markdown("**Wage Per Hour**: Enter the wage per hour of the individual (numeric value, e.g., 20.50).") |
|
st.sidebar.markdown("**Weeks Worked Per Year**: Specify the number of weeks the individual worked in a year (numeric value, e.g., 45).") |
|
st.sidebar.markdown("**Industry Code**: Choose the category code of the industry where the individual works (e.g., Category 1, Category 2).") |
|
st.sidebar.markdown("**Major Industry Code**: Select the major industry code of the individual's work (e.g., Industry A, Industry B).") |
|
st.sidebar.markdown("**Occupation Code**: Choose the category code of the occupation of the individual (e.g., Category X, Category Y).") |
|
st.sidebar.markdown("**Major Occupation Code**: Select the major occupation code of the individual (e.g., Occupation 1, Occupation 2).") |
|
st.sidebar.markdown("**Total Employed**: Specify the number of persons worked for the employer (numeric value, e.g., 3, 5).") |
|
st.sidebar.markdown("**Household Stat**: Choose the detailed household and family status of the individual (e.g., Single, Married-civilian spouse present).") |
|
st.sidebar.markdown("**Household Summary**: Select the detailed household summary (e.g., Child under 18 never married, Spouse of householder).") |
|
st.sidebar.markdown("**Veteran Benefits**: Choose whether the individual receives veteran benefits (Yes or No).") |
|
st.sidebar.markdown("**Tax Filer Status**: Select the tax filer status of the individual (e.g., Single, Joint both 65+).") |
|
st.sidebar.markdown("**Gains**: Specify any gains the individual has (numeric value, e.g., 1500.0).") |
|
st.sidebar.markdown("**Losses**: Specify any losses the individual has (numeric value, e.g., 300.0).") |
|
st.sidebar.markdown("**Dividends from Stocks**: Specify any dividends from stocks for the individual (numeric value, e.g., 120.5).") |
|
st.sidebar.markdown("**Citizenship**: Select the citizenship status of the individual (e.g., Native, Foreign Born- Not a citizen of U S).") |
|
st.sidebar.markdown("**Year of Migration**: Enter the year of migration for the individual (numeric value, e.g., 2005).") |
|
st.sidebar.markdown("**Country of Birth**: Choose the individual's birth country (e.g., United-States, Other).") |
|
st.sidebar.markdown("**Importance of Record**: Enter the weight of the instance (numeric value, e.g., 0.9).") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
with col1: |
|
age = st.number_input("Age", min_value=0) |
|
gender = st.selectbox("Gender", ["Male", "Female"]) |
|
education = st.selectbox("Education", unique_values['education']) |
|
worker_class = st.selectbox("Class of Worker", unique_values['worker_class']) |
|
marital_status = st.selectbox("Marital Status", unique_values['marital_status']) |
|
race = st.selectbox("Race", unique_values['race']) |
|
is_hispanic = st.selectbox("Hispanic Origin", unique_values['is_hispanic']) |
|
employment_commitment = st.selectbox("Full/Part-Time Employment", unique_values['employment_commitment']) |
|
wage_per_hour = st.number_input("Wage Per Hour", min_value=0) |
|
|
|
with col2: |
|
working_week_per_year = st.number_input("Weeks Worked Per Year", min_value=0) |
|
industry_code = st.selectbox("Category Code of Industry", unique_values['industry_code']) |
|
industry_code_main = st.selectbox("Major Industry Code", unique_values['industry_code_main']) |
|
occupation_code = st.selectbox("Category Code of Occupation", unique_values['occupation_code']) |
|
occupation_code_main = st.selectbox("Major Occupation Code", unique_values['occupation_code_main']) |
|
total_employed = st.number_input("Number of Persons Worked for Employer", min_value=0) |
|
household_stat = st.selectbox("Detailed Household and Family Status", unique_values['household_stat']) |
|
household_summary = st.selectbox("Detailed Household Summary", unique_values['household_summary']) |
|
vet_benefit = st.selectbox("Veteran Benefits", unique_values['vet_benefit']) |
|
|
|
with col3: |
|
tax_status = st.selectbox("Tax Filer Status", unique_values['tax_status']) |
|
gains = st.number_input("Gains", min_value=0) |
|
losses = st.number_input("Losses", min_value=0) |
|
stocks_status = st.number_input("Dividends from Stocks", min_value=0) |
|
citizenship = st.selectbox("Citizenship", unique_values['citizenship']) |
|
mig_year = st.selectbox("Migration Year", unique_values['mig_year']) |
|
country_of_birth_own = st.selectbox("Country of Birth", unique_values['country_of_birth_own']) |
|
importance_of_record = st.number_input("Importance of Record", min_value=0.0) |
|
|
|
|
|
if st.button("Predict"): |
|
|
|
user_input = { |
|
"age": int(age), |
|
"gender": gender, |
|
"education": education, |
|
"worker_class": worker_class, |
|
"marital_status": marital_status, |
|
"race": race, |
|
"is_hispanic": is_hispanic, |
|
"employment_commitment": employment_commitment, |
|
"wage_per_hour": int(wage_per_hour), |
|
"working_week_per_year": int(working_week_per_year), |
|
"industry_code": int(industry_code), |
|
"industry_code_main": industry_code_main, |
|
"occupation_code": int(occupation_code), |
|
"occupation_code_main": occupation_code_main, |
|
"total_employed": int(total_employed), |
|
"household_stat": household_stat, |
|
"household_summary": household_summary, |
|
"vet_benefit": int(vet_benefit), |
|
"tax_status": tax_status, |
|
"gains": int(gains), |
|
"losses": int(losses), |
|
"stocks_status": int(stocks_status), |
|
"citizenship": citizenship, |
|
"mig_year": int(mig_year), |
|
"country_of_birth_own": country_of_birth_own, |
|
"importance_of_record": float(importance_of_record) |
|
} |
|
|
|
response = requests.post("https://rasmodev-income-prediction-fastapi.hf.space/predict", json=user_input) |
|
prediction = response.text |
|
st.success(f"This individual is predicted to have an income of:{prediction}") |