Update app.py
Browse files
app.py
CHANGED
@@ -48,106 +48,40 @@ st.sidebar.markdown("**Year of Migration**: Enter the year of migration for the
|
|
48 |
st.sidebar.markdown("**Country of Birth**: Choose the individual's birth country (e.g., United-States, Other).")
|
49 |
st.sidebar.markdown("**Importance of Record**: Enter the weight of the instance (numeric value, e.g., 0.9).")
|
50 |
|
51 |
-
# Create
|
52 |
-
input_data = {
|
53 |
-
'age': 0, # Default values, you can change these as needed
|
54 |
-
'gender': unique_values['gender'][0],
|
55 |
-
'education': unique_values['education'][0],
|
56 |
-
'worker_class': unique_values['worker_class'][0],
|
57 |
-
'marital_status': unique_values['marital_status'][0],
|
58 |
-
'race': unique_values['race'][0],
|
59 |
-
'is_hispanic': unique_values['is_hispanic'][0],
|
60 |
-
'employment_commitment': unique_values['employment_commitment'][0],
|
61 |
-
'employment_stat': unique_values['employment_stat'][0],
|
62 |
-
'wage_per_hour': 0, # Default value
|
63 |
-
'working_week_per_year': 0, # Default value
|
64 |
-
'industry_code': 0, # Default value
|
65 |
-
'industry_code_main': unique_values['industry_code_main'][0],
|
66 |
-
'occupation_code': 0, # Default value
|
67 |
-
'occupation_code_main': unique_values['occupation_code_main'][0],
|
68 |
-
'total_employed': 0, # Default value
|
69 |
-
'household_stat': unique_values['household_stat'][0],
|
70 |
-
'household_summary': unique_values['household_summary'][0],
|
71 |
-
'vet_benefit': 0, # Default value
|
72 |
-
'tax_status': unique_values['tax_status'][0],
|
73 |
-
'gains': 0, # Default value
|
74 |
-
'losses': 0, # Default value
|
75 |
-
'stocks_status': 0, # Default value
|
76 |
-
'citizenship': unique_values['citizenship'][0],
|
77 |
-
'mig_year': 0,
|
78 |
-
'country_of_birth_own': 'United-States',
|
79 |
-
'importance_of_record': 0.0 # Default value
|
80 |
-
}
|
81 |
-
|
82 |
-
# Create the input fields
|
83 |
col1, col2, col3 = st.columns(3)
|
84 |
|
85 |
with col1:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
input_data['wage_per_hour'] = st.number_input("Wage Per Hour", min_value=0, key='wage_per_hour')
|
96 |
|
97 |
with col2:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
with col3:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
# Button to make predictions
|
119 |
-
if st.button("Predict"):
|
120 |
-
# Transform the input data to a DataFrame for prediction
|
121 |
-
input_df = pd.DataFrame([input_data])
|
122 |
-
|
123 |
-
# Make predictions
|
124 |
-
prediction = dt_model.predict(input_df)
|
125 |
-
prediction_proba = dt_model.predict_proba(input_df)
|
126 |
-
|
127 |
-
# Display prediction result
|
128 |
-
st.subheader("Prediction")
|
129 |
-
if prediction[0] == 1:
|
130 |
-
st.success("This individual is predicted to have an income of over $50K.")
|
131 |
-
else:
|
132 |
-
st.error("This individual is predicted to have an income of under $50K")
|
133 |
-
|
134 |
-
# Show prediction probability
|
135 |
-
st.subheader("Prediction Probability")
|
136 |
-
st.write(f"The probability of the individual having an income over $50K is: {prediction_proba[0][1]:.2f}")
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
import streamlit as st
|
141 |
-
import requests
|
142 |
-
|
143 |
-
# Streamlit UI for user input
|
144 |
-
st.title("Income Prediction App")
|
145 |
-
st.sidebar.header("Enter User Information")
|
146 |
-
|
147 |
-
# Create input fields for user input
|
148 |
-
age = st.number_input("Age", min_value=0)
|
149 |
-
gender = st.selectbox("Gender", ["Male", "Female"])
|
150 |
-
# Include other input fields...
|
151 |
|
152 |
# Button to trigger prediction
|
153 |
if st.button("Predict"):
|
@@ -155,18 +89,50 @@ if st.button("Predict"):
|
|
155 |
user_input = {
|
156 |
"age": age,
|
157 |
"gender": gender,
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
}
|
160 |
-
|
161 |
# Send a POST request to the FastAPI server
|
162 |
-
response = requests.post("
|
163 |
|
164 |
# Check if the request was successful
|
165 |
if response.status_code == 200:
|
166 |
prediction_data = response.json()
|
|
|
167 |
# Display prediction result to the user
|
168 |
st.subheader("Prediction Result")
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
else:
|
172 |
st.error("Error: Unable to get prediction")
|
|
|
48 |
st.sidebar.markdown("**Country of Birth**: Choose the individual's birth country (e.g., United-States, Other).")
|
49 |
st.sidebar.markdown("**Importance of Record**: Enter the weight of the instance (numeric value, e.g., 0.9).")
|
50 |
|
51 |
+
# Create input fields for user input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
col1, col2, col3 = st.columns(3)
|
53 |
|
54 |
with col1:
|
55 |
+
age = st.number_input("Age", min_value=0)
|
56 |
+
gender = st.selectbox("Gender", ["Male", "Female"])
|
57 |
+
education = st.selectbox("Education", unique_values['education'])
|
58 |
+
worker_class = st.selectbox("Class of Worker", unique_values['worker_class'])
|
59 |
+
marital_status = st.selectbox("Marital Status", unique_values['marital_status'])
|
60 |
+
race = st.selectbox("Race", unique_values['race'])
|
61 |
+
is_hispanic = st.selectbox("Hispanic Origin", unique_values['is_hispanic'])
|
62 |
+
employment_commitment = st.selectbox("Full/Part-Time Employment", unique_values['employment_commitment'])
|
63 |
+
wage_per_hour = st.number_input("Wage Per Hour", min_value=0)
|
|
|
64 |
|
65 |
with col2:
|
66 |
+
working_week_per_year = st.number_input("Weeks Worked Per Year", min_value=0)
|
67 |
+
industry_code = st.selectbox("Category Code of Industry", unique_values['industry_code'])
|
68 |
+
industry_code_main = st.selectbox("Major Industry Code", unique_values['industry_code_main'])
|
69 |
+
occupation_code = st.selectbox("Category Code of Occupation", unique_values['occupation_code'])
|
70 |
+
occupation_code_main = st.selectbox("Major Occupation Code", unique_values['occupation_code_main'])
|
71 |
+
total_employed = st.number_input("Number of Persons Worked for Employer", min_value=0)
|
72 |
+
household_stat = st.selectbox("Detailed Household and Family Status", unique_values['household_stat'])
|
73 |
+
household_summary = st.selectbox("Detailed Household Summary", unique_values['household_summary'])
|
74 |
+
vet_benefit = st.selectbox("Veteran Benefits", unique_values['vet_benefit'])
|
75 |
|
76 |
with col3:
|
77 |
+
tax_status = st.selectbox("Tax Filer Status", unique_values['tax_status'])
|
78 |
+
gains = st.number_input("Gains", min_value=0)
|
79 |
+
losses = st.number_input("Losses", min_value=0)
|
80 |
+
stocks_status = st.number_input("Dividends from Stocks", min_value=0)
|
81 |
+
citizenship = st.selectbox("Citizenship", unique_values['citizenship'])
|
82 |
+
mig_year = st.selectbox("Migration Year", unique_values['mig_year'])
|
83 |
+
country_of_birth_own = st.selectbox("Country of Birth", unique_values['country_of_birth_own'])
|
84 |
+
importance_of_record = st.number_input("Importance of Record", min_value=0.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Button to trigger prediction
|
87 |
if st.button("Predict"):
|
|
|
89 |
user_input = {
|
90 |
"age": age,
|
91 |
"gender": gender,
|
92 |
+
"education": education,
|
93 |
+
"worker_class": worker_class,
|
94 |
+
"marital_status": marital_status,
|
95 |
+
"race": race,
|
96 |
+
"is_hispanic": is_hispanic,
|
97 |
+
"employment_commitment": employment_commitment,
|
98 |
+
"wage_per_hour": wage_per_hour,
|
99 |
+
"working_week_per_year": working_week_per_year,
|
100 |
+
"industry_code": industry_code,
|
101 |
+
"industry_code_main": industry_code_main,
|
102 |
+
"occupation_code": occupation_code,
|
103 |
+
"occupation_code_main": occupation_code_main,
|
104 |
+
"total_employed": total_employed,
|
105 |
+
"household_stat": household_stat,
|
106 |
+
"household_summary": household_summary,
|
107 |
+
"vet_benefit": vet_benefit,
|
108 |
+
"tax_status": tax_status,
|
109 |
+
"gains": gains,
|
110 |
+
"losses": losses,
|
111 |
+
"stocks_status": stocks_status,
|
112 |
+
"citizenship": citizenship,
|
113 |
+
"mig_year": mig_year,
|
114 |
+
"country_of_birth_own": country_of_birth_own,
|
115 |
+
"importance_of_record": importance_of_record
|
116 |
}
|
|
|
117 |
# Send a POST request to the FastAPI server
|
118 |
+
response = requests.post("rasmodev-income-prediction-fastapi.hf.space/docs#/default/predict_income_predict__post", json=user_input)
|
119 |
|
120 |
# Check if the request was successful
|
121 |
if response.status_code == 200:
|
122 |
prediction_data = response.json()
|
123 |
+
|
124 |
# Display prediction result to the user
|
125 |
st.subheader("Prediction Result")
|
126 |
+
|
127 |
+
# Determine income prediction and format message
|
128 |
+
if prediction_data['income_prediction'] == "Income over $50K":
|
129 |
+
st.success("This individual is predicted to have an income of over $50K.")
|
130 |
+
else:
|
131 |
+
st.error("This individual is predicted to have an income of under $50K")
|
132 |
+
|
133 |
+
# Display prediction probability
|
134 |
+
st.subheader("Prediction Probability")
|
135 |
+
probability = prediction_data['prediction_probability']
|
136 |
+
st.write(f"The probability of the individual having an income over $50K is: {probability:.2f}")
|
137 |
else:
|
138 |
st.error("Error: Unable to get prediction")
|