import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import streamlit as st from streamlit_option_menu import option_menu import pickle import catboost from sklearn.impute import SimpleImputer import requests # Custom CSS styles for the top bar st.markdown( """ """, unsafe_allow_html=True, ) def home_page(): # Page title and banner image st.title("Income Prediction App") st.image("https://i.ytimg.com/vi/WULwst0vW8g/maxresdefault.jpg") st.write(""" The Income Prediction Challenge for Azubian is a machine learning project that aims to predict whether an individual's income falls above or below a specific income threshold. This information can be used to monitor income inequality and inform policy decisions. """) # The Problem of Income Inequality st.header("The Problem: Income Inequality 💸") st.write( """ Income inequality, a pervasive challenge that hinders economic progress and social well-being, demands innovative solutions. The "Income Prediction Challenge for Azubian" tackles this issue head-on, harnessing the power of machine learning to predict individual income levels. **Key Challenges of Income Inequality:** ⚠ 1. **Limited Economic Mobility:** 📉 Individuals from lower-income households often face barriers to education and professional growth, perpetuating income disparities. 2. **Healthcare Disparities:** 🩺 Income inequality often translates into unequal access to quality healthcare, leading to adverse health outcomes for lower-income individuals. 3. **Education Gaps:** 📚 Children from low-income households may have limited access to quality education, hindering their future opportunities. 4. **Social Unrest:** 💢 Extreme income inequality can fuel social unrest as individuals feel disenfranchised and discouraged. 5. **Economic Impact:** 📉 Income inequality impedes economic growth by reducing aggregate demand and creating economic instability. 6. **Policymaking Challenges:** 🧩 Policymakers require accurate data and insights to formulate effective strategies for reducing income inequality. """) def solution(): # Page title st.title("Income Prediction Solution") st.image("https://d2gg9evh47fn9z.cloudfront.net/1600px_COLOURBOX15103453.jpg") # Solution Overview st.header("Solution 💡: Combating Income Inequality with Data-Driven Solutions 📈 ") st.write(""" The "Income Prediction Challenge for Azubian" utilizes machine learning to predict individual income levels, providing valuable data to policymakers for informed action. This data-driven approach offers several advantages: * **Cost-Effectiveness:** 💰 Machine learning models are more cost-effective than traditional census methods. * **Timeliness:** ⏱️ Income predictions can be generated frequently, enabling timely interventions. * **Scalability:** 🚀 Machine learning models can be scaled to predict incomes for large populations, making them applicable to a wide range of scenarios. """) st.header("Objectives: 🎯") st.write(""" 1. **Income Prediction Model:** Develop a robust machine learning model to accurately predict individual income levels. 2. **Economic Inequality Mitigation:** Empower policymakers with data-driven insights to effectively address income inequality. 3. **Cost and Accuracy Improvement:** Enhance income-level monitoring through a cost-effective and accurate method compared to traditional census methods. Join us in tackling income inequality with data-driven solutions! """) # Model Description st.header("Model Description") st.write(""" **Model Training:** *Trained on a dataset of demographic and socioeconomic factors influencing income levels 📊 * A [CatBoost Classifier](https://catboost.ai/en/docs/concepts/python-reference_catboostclassifier) supervised learning algorithm used for model development ⚙️ **Model Evaluation:** * Performance assessed using metrics like accuracy, precision, recall, and F1 score 📈📊 * Metrics evaluate the model's ability to correctly classify individual income levels ☑️ """) # Impact and Benefits st.header("Impact and Benefits 📈") st.write(""" **Empowering Policymakers and Promoting Equitable Growth 📈** By providing accurate and timely insights into income distribution, we can empower policymakers to make informed decisions that: * Enhance understanding of income patterns 📊 * Identify areas with high income inequality 📍 * Target interventions to address income gaps 🎯 * Effectively allocate resources to poverty reduction 💰 * Promote economic mobility for individuals from low-income backgrounds ⬆️ Overall, this tool has the potential to make a meaningful contribution to the fight against income inequality and promote a more just and equitable society. ⚖️ """) def perform_eda(): st.title("Exploratory Data Analysis") st.write(""" 📊📈 Welcome to the Exploratory Data Analysis for the "Income Prediction" Project! 📈📊 Dive into the wealth of data and uncover insights about income prediction. Explore the data and understand the factors that contribute to an individual's income level. Let's begin our data-driven journey! 💰🔍 """) # Show the Power bi dashboard power_bi() def power_bi(): """ Embeds the Power BI report with specified dimensions and full-screen height. """ st.subheader("Exploring Income Data") st.write("Let's dive deeper into the data to understand income distribution and relationships between variables.") # Embed the Power BI iframe with specified dimensions power_bi_html = """ """ st.components.v1.html(power_bi_html) # Ensure full-screen height using CSS with st.empty(): st.write(""" """, unsafe_allow_html=True) def prediction(): # Load the saved model and unique values: with open("model_and_key_components.pkl", "rb") as f: components = pickle.load(f) # Extract the individual components dt_model = components["model"] unique_values = components["unique_values"] st.image("https://i.ytimg.com/vi/WULwst0vW8g/maxresdefault.jpg") st.title("Income Prediction App") # Sidebar with input field descriptions st.sidebar.header("Description of the Required Input Fields") st.sidebar.markdown("**Age**: Enter the age of the individual (e.g., 25, 42, 57).") st.sidebar.markdown("**Gender**: Select the gender of the individual (e.g., Male, Female).") st.sidebar.markdown("**Education**: Choose the highest education level of the individual (e.g., Bachelors Degree, High School Graduate, Masters Degree).") st.sidebar.markdown("**Worker Class**: Select the class of worker for the individual (e.g., Private, Government, Self-employed).") st.sidebar.markdown("**Marital Status**: Choose the marital status of the individual (e.g., Married, Never married, Divorced).") st.sidebar.markdown("**Race**: Select the race of the individual (e.g., White, Black, Asian-Pac-Islander).") st.sidebar.markdown("**Hispanic Origin**: Choose the Hispanic origin of the individual (e.g., Mexican, Puerto Rican, Cuban).") st.sidebar.markdown("**Full/Part-Time Employment**: Select the employment status as full-time or part-time (e.g., Full-time schedules, Part-time schedules).") st.sidebar.markdown("**Wage Per Hour**: Enter the wage per hour of the individual (numeric value, e.g., 20.50).") st.sidebar.markdown("**Weeks Worked Per Year**: Specify the number of weeks the individual worked in a year (numeric value, e.g., 45).") st.sidebar.markdown("**Industry Code**: Choose the category code of the industry where the individual works (e.g., Category 1, Category 2).") st.sidebar.markdown("**Major Industry Code**: Select the major industry code of the individual's work (e.g., Industry A, Industry B).") st.sidebar.markdown("**Occupation Code**: Choose the category code of the occupation of the individual (e.g., Category X, Category Y).") st.sidebar.markdown("**Major Occupation Code**: Select the major occupation code of the individual (e.g., Occupation 1, Occupation 2).") st.sidebar.markdown("**Total Employed**: Specify the number of persons worked for the employer (numeric value, e.g., 3, 5).") st.sidebar.markdown("**Household Stat**: Choose the detailed household and family status of the individual (e.g., Single, Married-civilian spouse present).") st.sidebar.markdown("**Household Summary**: Select the detailed household summary (e.g., Child under 18 never married, Spouse of householder).") st.sidebar.markdown("**Veteran Benefits**: Choose whether the individual receives veteran benefits (Yes or No).") st.sidebar.markdown("**Tax Filer Status**: Select the tax filer status of the individual (e.g., Single, Joint both 65+).") st.sidebar.markdown("**Gains**: Specify any gains the individual has (numeric value, e.g., 1500.0).") st.sidebar.markdown("**Losses**: Specify any losses the individual has (numeric value, e.g., 300.0).") st.sidebar.markdown("**Dividends from Stocks**: Specify any dividends from stocks for the individual (numeric value, e.g., 120.5).") st.sidebar.markdown("**Citizenship**: Select the citizenship status of the individual (e.g., Native, Foreign Born- Not a citizen of U S).") st.sidebar.markdown("**Year of Migration**: Enter the year of migration for the individual (numeric value, e.g., 2005).") st.sidebar.markdown("**Country of Birth**: Choose the individual's birth country (e.g., United-States, Other).") st.sidebar.markdown("**Importance of Record**: Enter the weight of the instance (numeric value, e.g., 0.9).") # Create the input fields in the order of your DataFrame input_data = { 'age': 0, # Default values, you can change these as needed 'gender': unique_values['gender'][0], 'education': unique_values['education'][0], 'worker_class': unique_values['worker_class'][0], 'marital_status': unique_values['marital_status'][0], 'race': unique_values['race'][0], 'is_hispanic': unique_values['is_hispanic'][0], 'employment_commitment': unique_values['employment_commitment'][0], 'employment_stat': unique_values['employment_stat'][0], 'wage_per_hour': 0, # Default value 'working_week_per_year': 0, # Default value 'industry_code': 0, # Default value 'industry_code_main': unique_values['industry_code_main'][0], 'occupation_code': 0, # Default value 'occupation_code_main': unique_values['occupation_code_main'][0], 'total_employed': 0, # Default value 'household_stat': unique_values['household_stat'][0], 'household_summary': unique_values['household_summary'][0], 'vet_benefit': 0, # Default value 'tax_status': unique_values['tax_status'][0], 'gains': 0, # Default value 'losses': 0, # Default value 'stocks_status': 0, # Default value 'citizenship': unique_values['citizenship'][0], 'mig_year': 0, 'country_of_birth_own': 'United-States', 'importance_of_record': 0.0 # Default value } # Create the input fields col1, col2, col3 = st.columns(3) with col1: input_data['age'] = st.number_input("Age", min_value=0, key='age') input_data['gender'] = st.selectbox("Gender", unique_values['gender'], key='gender') input_data['education'] = st.selectbox("Education", unique_values['education'], key='education') input_data['worker_class'] = st.selectbox("Class of Worker", unique_values['worker_class'], key='worker_class') input_data['marital_status'] = st.selectbox("Marital Status", unique_values['marital_status'], key='marital_status') input_data['race'] = st.selectbox("Race", unique_values['race'], key='race') input_data['is_hispanic'] = st.selectbox("Hispanic Origin", unique_values['is_hispanic'], key='is_hispanic') input_data['employment_commitment'] = st.selectbox("Full/Part-Time Employment", unique_values['employment_commitment'], key='employment_commitment') input_data['employment_stat'] = st.selectbox("Has Own Business Or Is Self Employed", unique_values['employment_stat'], key='employment_stat') input_data['wage_per_hour'] = st.number_input("Wage Per Hour", min_value=0, key='wage_per_hour') with col2: input_data['working_week_per_year'] = st.number_input("Weeks Worked Per Year", min_value=0, key='working_week_per_year') input_data['industry_code'] = st.selectbox("Category Code of Industry", unique_values['industry_code'], key='industry_code') input_data['industry_code_main'] = st.selectbox("Major Industry Code", unique_values['industry_code_main'], key='industry_code_main') input_data['occupation_code'] = st.selectbox("Category Code of Occupation", unique_values['occupation_code'], key='occupation_code') input_data['occupation_code_main'] = st.selectbox("Major Occupation Code", unique_values['occupation_code_main'], key='occupation_code_main') input_data['total_employed'] = st.number_input("Number of Persons Worked for Employer", min_value=0, key='total_employed') input_data['household_stat'] = st.selectbox("Detailed Household and Family Status", unique_values['household_stat'], key='household_stat') input_data['household_summary'] = st.selectbox("Detailed Household Summary", unique_values['household_summary'], key='household_summary') input_data['vet_benefit'] = st.selectbox("Veteran Benefits", unique_values['vet_benefit'], key='vet_benefit') with col3: input_data['tax_status'] = st.selectbox("Tax Filer Status", unique_values['tax_status'], key='tax_status') input_data['gains'] = st.number_input("Gains", min_value=0, key='gains') input_data['losses'] = st.number_input("Losses", min_value=0, key='losses') input_data['stocks_status'] = st.number_input("Dividends from Stocks", min_value=0, key='stocks_status') input_data['citizenship'] = st.selectbox("Citizenship", unique_values['citizenship'], key='citizenship') input_data['mig_year'] = st.selectbox("Migration Year", unique_values['mig_year'], key='migration_year') input_data['country_of_birth_own'] = st.selectbox("Country of Birth", unique_values['country_of_birth_own'], key='country_of_birth_own') input_data['importance_of_record'] = st.number_input("Importance of Record", min_value=0, key='importance_of_record') # Button to make predictions if st.button("Predict"): # Transform the input data to a DataFrame for prediction input_df = pd.DataFrame([input_data]) # Make predictions prediction = dt_model.predict(input_df) prediction_proba = dt_model.predict_proba(input_df) # Display prediction result st.subheader("Prediction") if prediction[0] == 1: st.success("This individual is predicted to have an income of over $50K.") else: st.error("This individual is predicted to have an income of under $50K") # Show prediction probability st.subheader("Prediction Probability") st.write(f"The probability of the individual having an income over $50K is: {prediction_proba[0][1]:.2f}") # Add navigation to the selected page selected_page = st.selectbox("Select a page", ["Home", "Solution", "EDA", "Predict Income"]) if selected_page == "Home": home_page() elif selected_page == "Solution": solution() elif selected_page == "EDA": perform_eda() else: prediction()