Spaces:
Running
Running
File size: 6,592 Bytes
6ae89f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import pandas as pd
import streamlit as st
import numpy as np
import pickle
# Load the saved components:
with open("rf_model.pkl", "rb") as f:
components = pickle.load(f)
# Extract the individual components
num_imputer = components["num_imputer"]
cat_imputer = components["cat_imputer"]
encoder = components["encoder"]
scaler = components["scaler"]
dt_model = components["models"]
st.image("https://pbs.twimg.com/media/DywhyJiXgAIUZej?format=jpg&name=medium")
st.title("Sales Prediction App")
st.caption("This app predicts sales patterns of Corporation Favorita over time in different stores in Ecuador based on the inputs.")
# Sidebar with input field descriptions
st.sidebar.header("Description of The Required Input Fields")
st.sidebar.markdown("**Store Number**: The number of the store.")
st.sidebar.markdown("**Product Family**: Product Family such as 'AUTOMOTIVE', 'BEAUTY', etc. "
"Details:\n"
" - **AUTOMOTIVE**: Products related to the automotive industry.\n"
" - **BEAUTY**: Beauty and personal care products.\n"
" - **CELEBRATION**: Products for celebrations and special occasions.\n"
" - **CLEANING**: Cleaning and household maintenance products.\n"
" - **CLOTHING**: Clothing and apparel items.\n"
" - **FOODS**: Food items and groceries.\n"
" - **GROCERY**: Grocery products.\n"
" - **HARDWARE**: Hardware and tools.\n"
" - **HOME**: Home improvement and decor products.\n"
" - **LADIESWEAR**: Women's clothing.\n"
" - **LAWN AND GARDEN**: Lawn and garden products.\n"
" - **LIQUOR,WINE,BEER**: Alcoholic beverages.\n"
" - **PET SUPPLIES**: Products for pets and animals.\n"
" - **STATIONERY**: Stationery and office supplies.")
st.sidebar.markdown("**Number of Items on Promotion**: Number of items on promotion within a particular shop.")
st.sidebar.markdown("**City**: City where the store is located.")
st.sidebar.markdown("**Cluster**: Cluster number which is a grouping of similar stores.")
st.sidebar.markdown("**Transactions**: Number of transactions.")
st.sidebar.markdown("**Crude Oil Price**: Daily Crude Oil Price.")
# Create the input fields
input_data = {}
col1,col2,col3 = st.columns(3)
with col1:
input_data['store_nbr'] = st.slider("Store Number",0,54)
input_data['family'] = st.selectbox("Product Family", ['AUTOMOTIVE', 'BEAUTY', 'CELEBRATION', 'CLEANING', 'CLOTHING', 'FOODS',
'GROCERY', 'HARDWARE', 'HOME', 'LADIESWEAR', 'LAWN AND GARDEN', 'LIQUOR,WINE,BEER',
'PET SUPPLIES', 'STATIONERY'])
input_data['onpromotion'] =st.number_input("Number of Items on Promotion",step=1)
input_data['state'] = st.selectbox("State Where The Store Is Located", ['Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura',
'Santo Domingo de los Tsachilas', 'Bolivar', 'Pastaza', 'Tungurahua', 'Guayas', 'Santa Elena', 'Los Rios', 'Azuay', 'Loja',
'El Oro', 'Esmeraldas', 'Manabi'])
input_data['transactions'] = st.number_input("Number of Transactions", step=1)
with col2:
input_data['store_type'] = st.selectbox("Store Type",['A', 'B', 'C', 'D', 'E'])
input_data['cluster'] = st.selectbox("Cluster", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17])
input_data['dcoilwtico'] = st.number_input("Crude Oil Price",step=1)
input_data['year'] = st.number_input("Year",step=1)
with col3:
input_data['month'] = st.slider("Month",1,12)
input_data['day'] = st.slider("Day",1,31)
input_data['dayofweek'] = st.number_input("Day of Week (0=Sunday and 6=Satruday)",step=1)
# Create a button to make a prediction
if st.button("Predict"):
# Convert the input data to a pandas DataFrame
input_df = pd.DataFrame([input_data])
# Product Categorization Based on Families
food_families = ['BEVERAGES', 'BREAD/BAKERY', 'FROZEN FOODS', 'MEATS', 'PREPARED FOODS', 'DELI', 'PRODUCE', 'DAIRY', 'POULTRY', 'EGGS', 'SEAFOOD']
home_families = ['HOME AND KITCHEN I', 'HOME AND KITCHEN II', 'HOME APPLIANCES']
clothing_families = ['LINGERIE', 'LADYSWARE']
grocery_families = ['GROCERY I', 'GROCERY II']
stationery_families = ['BOOKS', 'MAGAZINES', 'SCHOOL AND OFFICE SUPPLIES']
cleaning_families = ['HOME CARE', 'BABY CARE', 'PERSONAL CARE']
hardware_families = ['PLAYERS AND ELECTRONICS', 'HARDWARE']
# Apply the same preprocessing steps as done during training
input_df['family'] = np.where(input_df['family'].isin(food_families), 'FOODS', input_df['family'])
input_df['family'] = np.where(input_df['family'].isin(home_families), 'HOME', input_df['family'])
input_df['family'] = np.where(input_df['family'].isin(clothing_families), 'CLOTHING', input_df['family'])
input_df['family'] = np.where(input_df['family'].isin(grocery_families), 'GROCERY', input_df['family'])
input_df['family'] = np.where(input_df['family'].isin(stationery_families), 'STATIONERY', input_df['family'])
input_df['family'] = np.where(input_df['family'].isin(cleaning_families), 'CLEANING', input_df['family'])
input_df['family'] = np.where(input_df['family'].isin(hardware_families), 'HARDWARE', input_df['family'])
categorical_columns = ['family', 'store_type', 'state']
numerical_columns = ['transactions', 'dcoilwtico']
# Impute missing values
input_df_cat = input_df[categorical_columns].copy()
input_df_num = input_df[numerical_columns].copy()
input_df_cat_imputed = cat_imputer.transform(input_df_cat)
input_df_num_imputed = num_imputer.transform(input_df_num)
# Encode categorical features
input_df_cat_encoded = pd.DataFrame(encoder.transform(input_df_cat_imputed).toarray(),
columns=encoder.get_feature_names_out(categorical_columns))
# Scale numerical features
input_df_num_scaled = scaler.transform(input_df_num_imputed)
input_df_num_sc = pd.DataFrame(input_df_num_scaled, columns=numerical_columns)
# Combine encoded categorical features and scaled numerical features
input_df_processed = pd.concat([input_df_num_sc, input_df_cat_encoded], axis=1)
# Make predictions using the trained model
predictions = dt_model.predict(input_df_processed)
# Display the predicted sales value to the user:
st.write("The predicted sales are:", predictions[0]) |