Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,22 +38,16 @@ with col1:
|
|
38 |
with col2:
|
39 |
input_data['day'] = st.slider("Day", 1, 31)
|
40 |
input_data['month'] = st.slider("Month", 1, 12, value=6)
|
41 |
-
input_data['year'] = st.number_input("Year", 2018, 2020, value=2020)
|
42 |
|
43 |
-
# Create a button to
|
44 |
if st.button("Predict"):
|
45 |
# Feature Scaling
|
46 |
numerical_cols = ['day', 'month', 'year', 'shop_id', 'item_id', 'item_price', 'item_category_id']
|
47 |
-
|
48 |
-
input_df = pd.DataFrame(input_data, index=[0])
|
49 |
-
input_df_scaled = scaler.transform(input_df[numerical_cols])
|
50 |
-
input_df_scaled = pd.DataFrame(input_df_scaled, columns=numerical_cols)
|
51 |
-
|
52 |
-
# Fit the model
|
53 |
-
rf_model.fit(input_df_scaled)
|
54 |
|
55 |
# Make predictions using the trained model
|
56 |
-
predictions = rf_model.predict(
|
57 |
|
58 |
# Display the predicted sales value to the user
|
59 |
st.write("The predicted sales are:", predictions[0])
|
|
|
38 |
with col2:
|
39 |
input_data['day'] = st.slider("Day", 1, 31)
|
40 |
input_data['month'] = st.slider("Month", 1, 12, value=6)
|
41 |
+
input_data['year'] = st.number_input("Year", 2018, 2020, value=2020, step=1)
|
42 |
|
43 |
+
# Create a button to make a prediction
|
44 |
if st.button("Predict"):
|
45 |
# Feature Scaling
|
46 |
numerical_cols = ['day', 'month', 'year', 'shop_id', 'item_id', 'item_price', 'item_category_id']
|
47 |
+
input_df = pd.DataFrame(input_data, index=[0])[numerical_cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Make predictions using the trained model
|
50 |
+
predictions = rf_model.predict(input_df)
|
51 |
|
52 |
# Display the predicted sales value to the user
|
53 |
st.write("The predicted sales are:", predictions[0])
|