rasmodev commited on
Commit
08df2d8
·
verified ·
1 Parent(s): e6babe8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -10
app.py CHANGED
@@ -38,22 +38,16 @@ with col1:
38
  with col2:
39
  input_data['day'] = st.slider("Day", 1, 31)
40
  input_data['month'] = st.slider("Month", 1, 12, value=6)
41
- input_data['year'] = st.number_input("Year", 2018, 2020, value=2020)
42
 
43
- # Create a button to predict
44
  if st.button("Predict"):
45
  # Feature Scaling
46
  numerical_cols = ['day', 'month', 'year', 'shop_id', 'item_id', 'item_price', 'item_category_id']
47
- scaler.fit(input_data)
48
- input_df = pd.DataFrame(input_data, index=[0])
49
- input_df_scaled = scaler.transform(input_df[numerical_cols])
50
- input_df_scaled = pd.DataFrame(input_df_scaled, columns=numerical_cols)
51
-
52
- # Fit the model
53
- rf_model.fit(input_df_scaled)
54
 
55
  # Make predictions using the trained model
56
- predictions = rf_model.predict(input_df_scaled)
57
 
58
  # Display the predicted sales value to the user
59
  st.write("The predicted sales are:", predictions[0])
 
38
  with col2:
39
  input_data['day'] = st.slider("Day", 1, 31)
40
  input_data['month'] = st.slider("Month", 1, 12, value=6)
41
+ input_data['year'] = st.number_input("Year", 2018, 2020, value=2020, step=1)
42
 
43
+ # Create a button to make a prediction
44
  if st.button("Predict"):
45
  # Feature Scaling
46
  numerical_cols = ['day', 'month', 'year', 'shop_id', 'item_id', 'item_price', 'item_category_id']
47
+ input_df = pd.DataFrame(input_data, index=[0])[numerical_cols]
 
 
 
 
 
 
48
 
49
  # Make predictions using the trained model
50
+ predictions = rf_model.predict(input_df)
51
 
52
  # Display the predicted sales value to the user
53
  st.write("The predicted sales are:", predictions[0])