Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,120 +2,55 @@ import pandas as pd
|
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import pickle
|
5 |
-
|
6 |
-
# Load the saved components:
|
7 |
-
with open("rf_model.pkl", "rb") as f:
|
8 |
-
components = pickle.load(f)
|
9 |
-
|
10 |
-
# Extract the individual components
|
11 |
-
num_imputer = components["num_imputer"]
|
12 |
-
cat_imputer = components["cat_imputer"]
|
13 |
-
encoder = components["encoder"]
|
14 |
-
scaler = components["scaler"]
|
15 |
-
dt_model = components["models"]
|
16 |
|
17 |
st.image("https://pbs.twimg.com/media/DywhyJiXgAIUZej?format=jpg&name=medium")
|
18 |
-
st.title("Sales Prediction App")
|
19 |
-
|
20 |
-
st.caption("This app predicts sales patterns of Corporation Favorita over time in different stores in Ecuador based on the inputs.")
|
21 |
|
22 |
# Sidebar with input field descriptions
|
23 |
st.sidebar.header("Description of The Required Input Fields")
|
24 |
-
st.sidebar.markdown("**
|
25 |
-
st.sidebar.markdown("**
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
" - **FOODS**: Food items and groceries.\n"
|
33 |
-
" - **GROCERY**: Grocery products.\n"
|
34 |
-
" - **HARDWARE**: Hardware and tools.\n"
|
35 |
-
" - **HOME**: Home improvement and decor products.\n"
|
36 |
-
" - **LADIESWEAR**: Women's clothing.\n"
|
37 |
-
" - **LAWN AND GARDEN**: Lawn and garden products.\n"
|
38 |
-
" - **LIQUOR,WINE,BEER**: Alcoholic beverages.\n"
|
39 |
-
" - **PET SUPPLIES**: Products for pets and animals.\n"
|
40 |
-
" - **STATIONERY**: Stationery and office supplies.")
|
41 |
-
st.sidebar.markdown("**Number of Items on Promotion**: Number of items on promotion within a particular shop.")
|
42 |
-
st.sidebar.markdown("**City**: City where the store is located.")
|
43 |
-
st.sidebar.markdown("**Cluster**: Cluster number which is a grouping of similar stores.")
|
44 |
-
st.sidebar.markdown("**Transactions**: Number of transactions.")
|
45 |
-
st.sidebar.markdown("**Crude Oil Price**: Daily Crude Oil Price.")
|
46 |
-
|
47 |
|
48 |
# Create the input fields
|
49 |
input_data = {}
|
50 |
-
col1,col2
|
51 |
with col1:
|
52 |
-
input_data['
|
53 |
-
input_data['
|
54 |
-
|
55 |
-
|
56 |
-
input_data['onpromotion'] =st.number_input("Number of Items on Promotion",step=1)
|
57 |
-
input_data['state'] = st.selectbox("State Where The Store Is Located", ['Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura',
|
58 |
-
'Santo Domingo de los Tsachilas', 'Bolivar', 'Pastaza', 'Tungurahua', 'Guayas', 'Santa Elena', 'Los Rios', 'Azuay', 'Loja',
|
59 |
-
'El Oro', 'Esmeraldas', 'Manabi'])
|
60 |
-
input_data['transactions'] = st.number_input("Number of Transactions", step=1)
|
61 |
|
62 |
-
with col2:
|
63 |
-
input_data['
|
64 |
-
input_data['
|
65 |
-
input_data['
|
66 |
-
input_data['year'] = st.number_input("Year",step=1)
|
67 |
-
with col3:
|
68 |
-
input_data['month'] = st.slider("Month",1,12)
|
69 |
-
input_data['day'] = st.slider("Day",1,31)
|
70 |
-
input_data['dayofweek'] = st.number_input("Day of Week (0=Sunday and 6=Satruday)",step=1)
|
71 |
|
72 |
-
|
73 |
-
# Create a button to make a prediction
|
74 |
if st.button("Predict"):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
input_df['family'] = np.where(input_df['family'].isin(food_families), 'FOODS', input_df['family'])
|
90 |
-
input_df['family'] = np.where(input_df['family'].isin(home_families), 'HOME', input_df['family'])
|
91 |
-
input_df['family'] = np.where(input_df['family'].isin(clothing_families), 'CLOTHING', input_df['family'])
|
92 |
-
input_df['family'] = np.where(input_df['family'].isin(grocery_families), 'GROCERY', input_df['family'])
|
93 |
-
input_df['family'] = np.where(input_df['family'].isin(stationery_families), 'STATIONERY', input_df['family'])
|
94 |
-
input_df['family'] = np.where(input_df['family'].isin(cleaning_families), 'CLEANING', input_df['family'])
|
95 |
-
input_df['family'] = np.where(input_df['family'].isin(hardware_families), 'HARDWARE', input_df['family'])
|
96 |
-
|
97 |
-
categorical_columns = ['family', 'store_type', 'state']
|
98 |
-
numerical_columns = ['transactions', 'dcoilwtico']
|
99 |
-
|
100 |
-
# Impute missing values
|
101 |
-
input_df_cat = input_df[categorical_columns].copy()
|
102 |
-
input_df_num = input_df[numerical_columns].copy()
|
103 |
-
input_df_cat_imputed = cat_imputer.transform(input_df_cat)
|
104 |
-
input_df_num_imputed = num_imputer.transform(input_df_num)
|
105 |
-
|
106 |
-
# Encode categorical features
|
107 |
-
input_df_cat_encoded = pd.DataFrame(encoder.transform(input_df_cat_imputed).toarray(),
|
108 |
-
columns=encoder.get_feature_names_out(categorical_columns))
|
109 |
-
|
110 |
-
# Scale numerical features
|
111 |
-
input_df_num_scaled = scaler.transform(input_df_num_imputed)
|
112 |
-
input_df_num_sc = pd.DataFrame(input_df_num_scaled, columns=numerical_columns)
|
113 |
-
|
114 |
-
# Combine encoded categorical features and scaled numerical features
|
115 |
-
input_df_processed = pd.concat([input_df_num_sc, input_df_cat_encoded], axis=1)
|
116 |
-
|
117 |
# Make predictions using the trained model
|
118 |
-
predictions =
|
119 |
-
|
120 |
-
# Display the predicted sales value to the user
|
121 |
st.write("The predicted sales are:", predictions[0])
|
|
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import pickle
|
5 |
+
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
st.image("https://pbs.twimg.com/media/DywhyJiXgAIUZej?format=jpg&name=medium")
|
8 |
+
st.title("Store Sales Prediction App")
|
9 |
+
st.caption("This app predicts sales patterns in different stores based on the inputs.")
|
|
|
10 |
|
11 |
# Sidebar with input field descriptions
|
12 |
st.sidebar.header("Description of The Required Input Fields")
|
13 |
+
st.sidebar.markdown("**Shop ID**: Unique identifier for a specific shop.")
|
14 |
+
st.sidebar.markdown("**Item ID**: Unique identifier for a product.")
|
15 |
+
st.sidebar.markdown("**Item Price**: Current price of an item.")
|
16 |
+
st.sidebar.markdown("**Item Category ID**: Unique identifier for an item category.")
|
17 |
+
st.sidebar.markdown("**Total Sales**: The total daily sales.")
|
18 |
+
st.sidebar.markdown("**Day**: Day the product was purchased.")
|
19 |
+
st.sidebar.markdown("**Month**: Month the product was purchased.")
|
20 |
+
st.sidebar.markdown("**Year**: Year the product was purchased.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Create the input fields
|
23 |
input_data = {}
|
24 |
+
col1, col2 = st.columns(2)
|
25 |
with col1:
|
26 |
+
input_data['shop_id'] = st.slider("Shop ID", 0, 54)
|
27 |
+
input_data['item_id'] = st.slider("Item ID", 100000, 1022169)
|
28 |
+
input_data['item_price'] = st.number_input("Item Price", 0, 153990)
|
29 |
+
input_data['item_category_id'] = st.slider("Item Category ID", 0, 166)
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
with col2:
|
32 |
+
input_data['day'] = st.slider("Day", 1, 31)
|
33 |
+
input_data['month'] = st.slider("Month", 1, 12)
|
34 |
+
input_data['year'] = st.number_input("Year", 2018, 2019, 2020)
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Create a button to make a prediction
|
|
|
37 |
if st.button("Predict"):
|
38 |
+
# Feature Scaling
|
39 |
+
numerical_cols = ['shop_id', 'item_id', 'item_price', 'item_category_id', 'total_sales', 'day', 'month', 'year', 'day_of_week']
|
40 |
+
scaler = MinMaxScaler()
|
41 |
+
input_df = pd.DataFrame(input_data, index=[0])
|
42 |
+
input_df_scaled = scaler.fit_transform(input_df[numerical_cols])
|
43 |
+
input_df_scaled = pd.DataFrame(input_df_scaled, columns=numerical_cols)
|
44 |
+
|
45 |
+
# Load the scaler and model
|
46 |
+
with open('model_and_scaler.pkl', 'rb') as file:
|
47 |
+
model_and_scaler = pickle.load(file)
|
48 |
+
|
49 |
+
# Extract the model
|
50 |
+
rf_model = model_and_scaler['model']
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Make predictions using the trained model
|
53 |
+
predictions = rf_model.predict(input_df_scaled)
|
54 |
+
|
55 |
+
# Display the predicted sales value to the user
|
56 |
st.write("The predicted sales are:", predictions[0])
|