Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
3 |
-
import numpy as np
|
4 |
import pickle
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
6 |
|
@@ -12,6 +11,7 @@ with open('model_and_scaler.pkl', 'rb') as file:
|
|
12 |
scaler = model_and_scaler['scaler']
|
13 |
rf_model = model_and_scaler['model']
|
14 |
|
|
|
15 |
st.image("https://pbs.twimg.com/media/DywhyJiXgAIUZej?format=jpg&name=medium")
|
16 |
st.title("Store Sales Prediction App")
|
17 |
st.caption("This app predicts sales patterns in different stores based on the inputs.")
|
@@ -27,7 +27,7 @@ st.sidebar.markdown("**Day**: Day the product was purchased.")
|
|
27 |
st.sidebar.markdown("**Month**: Month the product was purchased.")
|
28 |
st.sidebar.markdown("**Year**: Year the product was purchased.")
|
29 |
|
30 |
-
|
31 |
input_data = {}
|
32 |
col1, col2 = st.columns(2)
|
33 |
with col1:
|
@@ -38,8 +38,8 @@ with col1:
|
|
38 |
|
39 |
with col2:
|
40 |
input_data['day'] = st.slider("Day", 1, 31)
|
41 |
-
input_data['month'] = st.slider("Month", 1, 12)
|
42 |
-
input_data['year'] = st.number_input("Year", 2018, 2020)
|
43 |
|
44 |
# Create a button to make a prediction
|
45 |
if st.button("Predict"):
|
@@ -50,13 +50,6 @@ if st.button("Predict"):
|
|
50 |
input_df_scaled = scaler.fit_transform(input_df[numerical_cols])
|
51 |
input_df_scaled = pd.DataFrame(input_df_scaled, columns=numerical_cols)
|
52 |
|
53 |
-
# Load the scaler and model
|
54 |
-
with open('model_and_scaler.pkl', 'rb') as file:
|
55 |
-
model_and_scaler = pickle.load(file)
|
56 |
-
|
57 |
-
# Extract the model
|
58 |
-
rf_model = model_and_scaler['model']
|
59 |
-
|
60 |
# Make predictions using the trained model
|
61 |
predictions = rf_model.predict(input_df_scaled)
|
62 |
|
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
|
|
3 |
import pickle
|
4 |
from sklearn.preprocessing import MinMaxScaler
|
5 |
|
|
|
11 |
scaler = model_and_scaler['scaler']
|
12 |
rf_model = model_and_scaler['model']
|
13 |
|
14 |
+
# Define app title and description
|
15 |
st.image("https://pbs.twimg.com/media/DywhyJiXgAIUZej?format=jpg&name=medium")
|
16 |
st.title("Store Sales Prediction App")
|
17 |
st.caption("This app predicts sales patterns in different stores based on the inputs.")
|
|
|
27 |
st.sidebar.markdown("**Month**: Month the product was purchased.")
|
28 |
st.sidebar.markdown("**Year**: Year the product was purchased.")
|
29 |
|
30 |
+
# Create the input fields
|
31 |
input_data = {}
|
32 |
col1, col2 = st.columns(2)
|
33 |
with col1:
|
|
|
38 |
|
39 |
with col2:
|
40 |
input_data['day'] = st.slider("Day", 1, 31)
|
41 |
+
input_data['month'] = st.slider("Month", 1, 12, value=6)
|
42 |
+
input_data['year'] = st.number_input("Year", 2018, 2020, value=2020)
|
43 |
|
44 |
# Create a button to make a prediction
|
45 |
if st.button("Predict"):
|
|
|
50 |
input_df_scaled = scaler.fit_transform(input_df[numerical_cols])
|
51 |
input_df_scaled = pd.DataFrame(input_df_scaled, columns=numerical_cols)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# Make predictions using the trained model
|
54 |
predictions = rf_model.predict(input_df_scaled)
|
55 |
|