Spaces:
Running
Running
import gradio as gr | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer | |
model_id = "rasyosef/gpt2-small-amharic-128-v3" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
gpt2_am = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
def generate(prompt): | |
prompt_length = len(tokenizer.tokenize(prompt)) | |
if prompt_length >= 128: | |
yield prompt + "\n\nPrompt is too long. It needs to be less than 128 tokens." | |
else: | |
max_new_tokens = max(0, 128 - prompt_length) | |
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=False, skip_special_tokens=True, timeout=300.0) | |
thread = Thread( | |
target=gpt2_am, | |
kwargs={ | |
"text_inputs": prompt, | |
"max_new_tokens": max_new_tokens, | |
"temperature": 0.8, | |
"do_sample": True, | |
"top_k": 8, | |
"top_p": 0.8, | |
"repetition_penalty": 1.25, | |
"streamer": streamer | |
}) | |
thread.start() | |
generated_text = "" | |
for word in streamer: | |
generated_text += word | |
response = generated_text.strip() | |
yield response | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# GPT2 Amharic | |
This is a demo for a smaller version of the gpt2 decoder transformer model pretrained for 1.5 days on `290 million` tokens of **Amharic** text. The context size of `gpt2-small-amharic` is 128 tokens. | |
""") | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt here", lines=4, interactive=True) | |
with gr.Row(): | |
with gr.Column(): | |
gen = gr.Button("Generate") | |
with gr.Column(): | |
btn = gr.ClearButton([prompt]) | |
gen.click(generate, inputs=[prompt], outputs=[prompt]) | |
examples = gr.Examples( | |
examples=[ | |
"የ አዲስ አበባ", | |
"በ ኢንግሊዝ ፕሪምየር ሊግ", | |
"ፕሬዚዳንት ዶናልድ ትራምፕ" | |
], | |
inputs=[prompt], | |
) | |
demo.queue().launch(debug=True) |