File size: 6,511 Bytes
24445e1 0e9ce7a 24445e1 f7e770a 0e9ce7a 24445e1 03e7215 24445e1 03e7215 24445e1 03e7215 24445e1 ad7d9a9 6367c10 ad7d9a9 222d618 164d413 222d618 5aab34d 24445e1 1e7cadb 24445e1 164d413 24445e1 1e7cadb 24445e1 e832688 5aab34d 0e9ce7a ad7d9a9 24445e1 4c5f0fe 24445e1 ad7d9a9 24445e1 e832688 f0a4462 e832688 1d57a43 e832688 a65c505 e832688 ad7d9a9 03e7215 24445e1 0858c92 03e7215 24445e1 03e7215 ad7d9a9 24445e1 ad7d9a9 0e9ce7a 24445e1 ad7d9a9 4c5f0fe 03e7215 24445e1 ad7d9a9 5aab34d 0e9ce7a ad7d9a9 2c7ed51 0e9ce7a ad7d9a9 e832688 03e7215 ad7d9a9 03e7215 ad7d9a9 e832688 4c5f0fe 6f6a921 4c5f0fe 03e7215 4c5f0fe 24445e1 03e7215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain.vectorstores.faiss import FAISS
from langchain.vectorstores.utils import DistanceStrategy
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts.prompt import PromptTemplate
from langchain.vectorstores.base import VectorStoreRetriever
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import TextIteratorStreamer
from threading import Thread
# Prompt template
template = """Instruction:
You are an AI assistant for answering questions about the provided context.
You are given the following extracted parts of a long document and a question. Provide a detailed answer.
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
=======
{context}
=======
Question: {question}
Output:\n"""
QA_PROMPT = PromptTemplate(
template=template,
input_variables=["question", "context"]
)
# Load Phi-2 model from hugging face hub
model_id = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True)
# sentence transformers to be used in vector store
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/msmarco-distilbert-base-v4",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': False}
)
# Returns a faiss vector store retriever given a txt file
def prepare_vector_store_retriever(filename):
# Load data
loader = UnstructuredFileLoader(filename)
raw_documents = loader.load()
# Split the text
text_splitter = CharacterTextSplitter(
separator="\n\n",
chunk_size=800,
chunk_overlap=0,
length_function=len
)
documents = text_splitter.split_documents(raw_documents)
# Creating a vectorstore
vectorstore = FAISS.from_documents(documents, embeddings, distance_strategy=DistanceStrategy.DOT_PRODUCT)
return VectorStoreRetriever(vectorstore=vectorstore, search_kwargs={"k": 2})
# Retrieveal QA chian
def get_retrieval_qa_chain(text_file, hf_model):
retriever = default_retriever
if text_file != default_text_file:
retriever = prepare_vector_store_retriever(text_file)
chain = RetrievalQA.from_chain_type(
llm=hf_model,
retriever=retriever,
chain_type_kwargs={"prompt": QA_PROMPT},
)
return chain
# Generates response using the question answering chain defined earlier
def generate(question, answer, text_file, max_new_tokens):
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
phi2_pipeline = pipeline(
"text-generation", tokenizer=tokenizer, model=model, max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id,
device_map="cpu", streamer=streamer
)
hf_model = HuggingFacePipeline(pipeline=phi2_pipeline)
qa_chain = get_retrieval_qa_chain(text_file, hf_model)
query = f"{question}"
if len(tokenizer.tokenize(query)) >= 512:
query = "Repeat 'Your question is too long!'"
thread = Thread(target=qa_chain.invoke, kwargs={"input": {"query": query}})
thread.start()
response = ""
for token in streamer:
response += token
yield response.strip()
# replaces the retreiver in the question answering chain whenever a new file is uploaded
def upload_file(file):
return file, file
with gr.Blocks() as demo:
gr.Markdown("""
# Retrieval Augmented Generation with Phi-2: Question Answering demo
### This demo uses the Phi-2 language model and Retrieval Augmented Generation (RAG). It allows you to upload a txt file and ask the model questions related to the content of that file.
### If you don't have one, there is a txt file already loaded, the new Oppenheimer movie's entire wikipedia page. The movie came out very recently in July, 2023, so the Phi-2 model is not aware of it.
The context size of the Phi-2 model is 2048 tokens, so even this medium size wikipedia page (11.5k tokens) does not fit in the context window.
Retrieval Augmented Generation (RAG) enables us to retrieve just the few small chunks of the document that are relevant to the our query and inject it into our prompt.
The model is then able to answer questions by incorporating knowledge from the newly provided document. RAG can be used with thousands of documents, but this demo is limited to just one txt file.
""")
default_text_file = "Oppenheimer-movie-wiki.txt"
default_retriever = prepare_vector_store_retriever(default_text_file)
text_file = gr.State(default_text_file)
gr.Markdown("## Upload a txt file or Use the Default 'Oppenheimer-movie-wiki.txt' that has already been loaded")
file_name = gr.Textbox(label="Loaded text file", value=default_text_file, lines=1, interactive=False)
upload_button = gr.UploadButton(
label="Click to upload a text file",
file_types=["text"],
file_count="single"
)
upload_button.upload(upload_file, upload_button, [file_name, text_file])
gr.Markdown("## Enter your question")
tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")
with gr.Row():
with gr.Column():
ques = gr.Textbox(label="Question", placeholder="Enter text here", lines=3)
with gr.Column():
ans = gr.Textbox(label="Answer", lines=4, interactive=False)
with gr.Row():
with gr.Column():
btn = gr.Button("Submit")
with gr.Column():
clear = gr.ClearButton([ques, ans])
btn.click(fn=generate, inputs=[ques, ans, text_file, tokens_slider], outputs=[ans])
examples = gr.Examples(
examples=[
"Who portrayed J. Robert Oppenheimer in the new Oppenheimer movie?",
"In the plot of the movie, why did Lewis Strauss resent Robert Oppenheimer?",
"How much money did the Oppenheimer movie make at the US and global box office?",
"What score did the Oppenheimer movie get on Rotten Tomatoes and Metacritic?"
],
inputs=[ques],
)
demo.queue().launch() |