ratulsur commited on
Commit
04c79aa
Β·
verified Β·
1 Parent(s): 89fd6ac

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -202
main.py DELETED
@@ -1,202 +0,0 @@
1
- import streamlit as st
2
- import plotly.graph_objects as go
3
- from datetime import datetime, timedelta
4
- import pandas as pd
5
- import numpy as np
6
-
7
- from utils.patterns import identify_patterns, calculate_technical_indicators
8
- from utils.predictions import predict_movement
9
- from utils.trading import fetch_market_data, is_market_open
10
-
11
- # Page configuration
12
- st.set_page_config(
13
- page_title="Trading Pattern Analysis",
14
- page_icon="πŸ“ˆ",
15
- layout="wide"
16
- )
17
-
18
- # Load custom CSS
19
- with open('styles/custom.css') as f:
20
- st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
21
-
22
- # Pattern descriptions from the uploaded file
23
- PATTERN_DESCRIPTIONS = {
24
- 'HAMMER': 'Small body near the top with long lower wick, indicating buying pressure overcoming selling pressure.',
25
- 'INVERTED_HAMMER': 'Small body with long upper wick after downtrend, indicating resistance but potential upward movement.',
26
- 'PIERCING_LINE': 'Two-candlestick pattern where second closes above midpoint of first, signaling bullish shift.',
27
- 'BULLISH_ENGULFING': 'Small bearish candle followed by larger bullish candle that engulfs previous one.',
28
- 'MORNING_STAR': 'Three-candlestick pattern with bearish, small-bodied, and bullish candle indicating reversal.',
29
- 'THREE_WHITE_SOLDIERS': 'Three consecutive long bullish candles with small/no wicks, showing strong buying pressure.',
30
- 'BULLISH_HARAMI': 'Small bullish candle within body of preceding large bearish candle.',
31
- 'HANGING_MAN': 'Small body at top with long lower wick, signaling potential reversal.',
32
- 'DARK_CLOUD_COVER': 'Two-candlestick pattern with bearish closing below midpoint of previous bullish.',
33
- 'BEARISH_ENGULFING': 'Small bullish candle followed by larger bearish candle that engulfs it.',
34
- 'EVENING_STAR': 'Three-candlestick pattern with bullish, small-bodied, and bearish candle.',
35
- 'THREE_BLACK_CROWS': 'Three consecutive bearish candles showing strong selling.',
36
- 'SHOOTING_STAR': 'Small body with long upper wick, signaling resistance.',
37
- 'DOJI': 'Small body with wicks, showing market indecision.',
38
- 'DRAGONFLY_DOJI': 'Doji with long lower wick, showing buying pressure at bottom.',
39
- 'GRAVESTONE_DOJI': 'Doji with long upper wick, showing selling pressure at top.'
40
- }
41
-
42
- # Sidebar
43
- st.sidebar.title("Trading Controls")
44
-
45
- # Market Status Indicator
46
- market_open = is_market_open()
47
- status_color = "🟒" if market_open else "πŸ”΄"
48
- market_status = "Market Open" if market_open else "Market Closed"
49
- st.sidebar.write(f"{status_color} {market_status}")
50
-
51
- symbol = st.sidebar.text_input("Symbol", value="AAPL", help="Enter a valid stock symbol (e.g., AAPL, MSFT)")
52
- timeframe = st.sidebar.selectbox(
53
- "Timeframe",
54
- ["30m", "1h", "2h", "4h"],
55
- index=0,
56
- help="Select analysis timeframe (each candle represents 15 minutes)"
57
- )
58
-
59
- # Add auto-refresh option
60
- auto_refresh = st.sidebar.checkbox("Auto-refresh data", value=True)
61
- if auto_refresh:
62
- st.sidebar.write("Updates every minute")
63
- st.rerun() # Use st.rerun() instead of experimental_rerun()
64
-
65
- # Main content
66
- st.title("Trading Pattern Analysis")
67
-
68
- try:
69
- # Fetch and process data
70
- with st.spinner('Fetching market data...'):
71
- df = fetch_market_data(symbol, period='1d', interval='15m')
72
-
73
- if len(df) >= 2:
74
- df = calculate_technical_indicators(df)
75
- patterns = identify_patterns(df)
76
-
77
- # Create candlestick chart
78
- fig = go.Figure(data=[go.Candlestick(
79
- x=df.index,
80
- open=df['Open'],
81
- high=df['High'],
82
- low=df['Low'],
83
- close=df['Close']
84
- )])
85
-
86
- # Update layout for dark theme
87
- fig.update_layout(
88
- template="plotly_dark",
89
- plot_bgcolor="#252525",
90
- paper_bgcolor="#252525",
91
- xaxis_rangeslider_visible=False,
92
- height=600,
93
- title=f"{symbol} - Live Market Data ({timeframe} timeframe)"
94
- )
95
-
96
- # Display chart
97
- st.plotly_chart(fig, use_container_width=True)
98
-
99
- # Pattern Analysis
100
- col1, col2 = st.columns(2)
101
-
102
- with col1:
103
- st.subheader("Pattern Analysis")
104
- if not patterns.empty and len(patterns) > 0:
105
- latest_patterns = patterns.iloc[-1]
106
- detected_patterns = latest_patterns[latest_patterns == 1].index.tolist()
107
-
108
- if detected_patterns:
109
- st.write("Detected Patterns:")
110
- for pattern in detected_patterns:
111
- st.markdown(f"""
112
- <div class="pattern-container">
113
- <h4>β€’ {pattern.replace('_', ' ')}</h4>
114
- <p>{PATTERN_DESCRIPTIONS.get(pattern, '')}</p>
115
- </div>
116
- """, unsafe_allow_html=True)
117
- else:
118
- st.info("No patterns detected in current timeframe")
119
- else:
120
- st.write("No pattern data available")
121
-
122
- with col2:
123
- st.subheader("Prediction")
124
- if len(df) >= 30:
125
- prediction, probability = predict_movement(df)
126
-
127
- if prediction is not None and probability is not None:
128
- direction = "Upward" if prediction else "Downward"
129
- confidence = probability[1] if prediction else probability[0]
130
-
131
- direction_class = "profit" if direction == "Upward" else "loss"
132
- st.markdown(f"""
133
- <div class="prediction-container">
134
- <h3 class="{direction_class}">Predicted Movement: {direction}</h3>
135
- <p>Confidence: {confidence:.2%}</p>
136
- <p>(Next 15-minute prediction)</p>
137
- </div>
138
- """, unsafe_allow_html=True)
139
- else:
140
- st.write("Could not generate prediction")
141
- else:
142
- st.write("Insufficient data for prediction")
143
-
144
- # Technical Indicators
145
- st.subheader("Technical Indicators")
146
- col3, col4, col5 = st.columns(3)
147
-
148
- with col3:
149
- last_rsi = df['RSI'].iloc[-1] if 'RSI' in df else None
150
- prev_rsi = df['RSI'].iloc[-2] if 'RSI' in df and len(df) > 1 else None
151
-
152
- if last_rsi is not None and prev_rsi is not None:
153
- delta = last_rsi - prev_rsi
154
- delta_color = "profit" if delta > 0 else "loss"
155
- st.markdown(f"""
156
- <div class="metric-container">
157
- <h4>RSI</h4>
158
- <p>{last_rsi:.2f}</p>
159
- <p class="{delta_color}">({delta:+.2f})</p>
160
- </div>
161
- """, unsafe_allow_html=True)
162
-
163
- with col4:
164
- last_macd = df['MACD'].iloc[-1] if 'MACD' in df else None
165
- prev_macd = df['MACD'].iloc[-2] if 'MACD' in df and len(df) > 1 else None
166
-
167
- if last_macd is not None and prev_macd is not None:
168
- delta = last_macd - prev_macd
169
- delta_color = "profit" if delta > 0 else "loss"
170
- st.markdown(f"""
171
- <div class="metric-container">
172
- <h4>MACD</h4>
173
- <p>{last_macd:.2f}</p>
174
- <p class="{delta_color}">({delta:+.2f})</p>
175
- </div>
176
- """, unsafe_allow_html=True)
177
-
178
- with col5:
179
- last_sma = df['SMA_20'].iloc[-1] if 'SMA_20' in df else None
180
- last_close = df['Close'].iloc[-1] if len(df) > 0 else None
181
-
182
- if last_sma is not None and last_close is not None:
183
- delta = last_close - last_sma
184
- delta_color = "profit" if delta > 0 else "loss"
185
- st.markdown(f"""
186
- <div class="metric-container">
187
- <h4>15-min SMA</h4>
188
- <p>{last_sma:.2f}</p>
189
- <p class="{delta_color}">({delta:+.2f})</p>
190
- </div>
191
- """, unsafe_allow_html=True)
192
- else:
193
- st.warning("Insufficient data points. This could be because the market is closed or the selected timeframe is too short.")
194
-
195
- except Exception as e:
196
- st.error(f"Error: {str(e)}")
197
- if "Connection Error" in str(e):
198
- st.warning("Unable to connect to market data. Please check your internet connection and try again.")
199
- elif "not found" in str(e):
200
- st.warning("Invalid symbol. Please enter a valid stock symbol.")
201
- else:
202
- st.info("If the market is closed, you can still view the most recent trading data.")