ratulsur commited on
Commit
bfa4e15
·
verified ·
1 Parent(s): f51bb32

Upload 3 files

Browse files
Files changed (3) hide show
  1. patterns.py +173 -0
  2. predictions.py +33 -0
  3. trading.py +71 -0
patterns.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+
4
+ def identify_patterns(df):
5
+ """Identify candlestick patterns in the data using basic calculations"""
6
+ patterns = pd.DataFrame(index=df.index)
7
+
8
+ # Calculate basic candlestick properties
9
+ body = df['Close'] - df['Open']
10
+ body_abs = abs(body)
11
+ upper_shadow = df['High'] - df[['Open', 'Close']].max(axis=1)
12
+ lower_shadow = df[['Open', 'Close']].min(axis=1) - df['Low']
13
+
14
+ # 1. Hammer Pattern
15
+ patterns['HAMMER'] = np.where(
16
+ (lower_shadow > 2 * body_abs) & # Long lower shadow
17
+ (upper_shadow <= 0.1 * body_abs) & # Minimal upper shadow
18
+ (body > 0), # Bullish close
19
+ 1, 0
20
+ )
21
+
22
+ # 2. Inverted Hammer Pattern
23
+ patterns['INVERTED_HAMMER'] = np.where(
24
+ (upper_shadow > 2 * body_abs) & # Long upper shadow
25
+ (lower_shadow <= 0.1 * body_abs) & # Minimal lower shadow
26
+ (body > 0), # Bullish close
27
+ 1, 0
28
+ )
29
+
30
+ # 3. Piercing Line Pattern
31
+ patterns['PIERCING_LINE'] = np.where(
32
+ (body.shift(1) < 0) & # Previous candle bearish
33
+ (body > 0) & # Current candle bullish
34
+ (df['Open'] < df['Close'].shift(1)) & # Opens below previous close
35
+ (df['Close'] > (df['Open'].shift(1) + df['Close'].shift(1)) / 2), # Closes above midpoint
36
+ 1, 0
37
+ )
38
+
39
+ # 4. Bullish Engulfing Pattern
40
+ patterns['BULLISH_ENGULFING'] = np.where(
41
+ (body.shift(1) < 0) & # Previous candle bearish
42
+ (body > 0) & # Current candle bullish
43
+ (df['Open'] < df['Close'].shift(1)) & # Opens below previous close
44
+ (df['Close'] > df['Open'].shift(1)), # Closes above previous open
45
+ 1, 0
46
+ )
47
+
48
+ # 5. Morning Star Pattern
49
+ patterns['MORNING_STAR'] = np.where(
50
+ (body.shift(2) < 0) & # First candle bearish
51
+ (abs(body.shift(1)) < abs(body.shift(2)) * 0.3) & # Second candle small
52
+ (body > 0) & # Third candle bullish
53
+ (df['Close'] > df['Close'].shift(2) * 0.5), # Closes above midpoint
54
+ 1, 0
55
+ )
56
+
57
+ # 6. Three White Soldiers
58
+ patterns['THREE_WHITE_SOLDIERS'] = np.where(
59
+ (body > 0) & # Current candle bullish
60
+ (body.shift(1) > 0) & # Previous candle bullish
61
+ (body.shift(2) > 0) & # Two candles ago bullish
62
+ (df['Close'] > df['Close'].shift(1)) & # Each closes higher
63
+ (df['Close'].shift(1) > df['Close'].shift(2)),
64
+ 1, 0
65
+ )
66
+
67
+ # 7. Bullish Harami
68
+ patterns['BULLISH_HARAMI'] = np.where(
69
+ (body.shift(1) < 0) & # Previous candle bearish
70
+ (body > 0) & # Current candle bullish
71
+ (df['Open'] > df['Close'].shift(1)) & # Opens inside previous body
72
+ (df['Close'] < df['Open'].shift(1)), # Closes inside previous body
73
+ 1, 0
74
+ )
75
+
76
+ # 8. Hanging Man
77
+ patterns['HANGING_MAN'] = np.where(
78
+ (lower_shadow > 2 * body_abs) & # Long lower shadow
79
+ (upper_shadow <= 0.1 * body_abs) & # Minimal upper shadow
80
+ (body < 0), # Bearish close
81
+ 1, 0
82
+ )
83
+
84
+ # 9. Dark Cloud Cover
85
+ patterns['DARK_CLOUD_COVER'] = np.where(
86
+ (body.shift(1) > 0) & # Previous candle bullish
87
+ (body < 0) & # Current candle bearish
88
+ (df['Open'] > df['High'].shift(1)) & # Opens above previous high
89
+ (df['Close'] < (df['Open'].shift(1) + df['Close'].shift(1)) / 2), # Closes below midpoint
90
+ 1, 0
91
+ )
92
+
93
+ # 10. Bearish Engulfing
94
+ patterns['BEARISH_ENGULFING'] = np.where(
95
+ (body.shift(1) > 0) & # Previous candle bullish
96
+ (body < 0) & # Current candle bearish
97
+ (df['Open'] > df['Close'].shift(1)) & # Opens above previous close
98
+ (df['Close'] < df['Open'].shift(1)), # Closes below previous open
99
+ 1, 0
100
+ )
101
+
102
+ # 11. Evening Star
103
+ patterns['EVENING_STAR'] = np.where(
104
+ (body.shift(2) > 0) & # First candle bullish
105
+ (abs(body.shift(1)) < abs(body.shift(2)) * 0.3) & # Second candle small
106
+ (body < 0) & # Third candle bearish
107
+ (df['Close'] < df['Close'].shift(2) * 0.5), # Closes below midpoint
108
+ 1, 0
109
+ )
110
+
111
+ # 12. Three Black Crows
112
+ patterns['THREE_BLACK_CROWS'] = np.where(
113
+ (body < 0) & # Current candle bearish
114
+ (body.shift(1) < 0) & # Previous candle bearish
115
+ (body.shift(2) < 0) & # Two candles ago bearish
116
+ (df['Close'] < df['Close'].shift(1)) & # Each closes lower
117
+ (df['Close'].shift(1) < df['Close'].shift(2)),
118
+ 1, 0
119
+ )
120
+
121
+ # 13. Shooting Star
122
+ patterns['SHOOTING_STAR'] = np.where(
123
+ (upper_shadow > 2 * body_abs) & # Long upper shadow
124
+ (lower_shadow <= 0.1 * body_abs) & # Minimal lower shadow
125
+ (body < 0), # Bearish close
126
+ 1, 0
127
+ )
128
+
129
+ # 14. Doji Patterns
130
+ patterns['DOJI'] = np.where(
131
+ abs(body) <= 0.1 * (df['High'] - df['Low']), # Very small body
132
+ 1, 0
133
+ )
134
+
135
+ # 15. Dragonfly Doji
136
+ patterns['DRAGONFLY_DOJI'] = np.where(
137
+ (abs(body) <= 0.1 * (df['High'] - df['Low'])) & # Doji body
138
+ (upper_shadow <= 0.1 * (df['High'] - df['Low'])) & # Minimal upper shadow
139
+ (lower_shadow >= 0.7 * (df['High'] - df['Low'])), # Long lower shadow
140
+ 1, 0
141
+ )
142
+
143
+ # 16. Gravestone Doji
144
+ patterns['GRAVESTONE_DOJI'] = np.where(
145
+ (abs(body) <= 0.1 * (df['High'] - df['Low'])) & # Doji body
146
+ (lower_shadow <= 0.1 * (df['High'] - df['Low'])) & # Minimal lower shadow
147
+ (upper_shadow >= 0.7 * (df['High'] - df['Low'])), # Long upper shadow
148
+ 1, 0
149
+ )
150
+
151
+ return patterns
152
+
153
+ def calculate_technical_indicators(df):
154
+ """Calculate technical indicators for analysis"""
155
+ # RSI
156
+ delta = df['Close'].diff()
157
+ gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
158
+ loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
159
+ rs = gain / loss
160
+ df['RSI'] = 100 - (100 / (1 + rs))
161
+
162
+ # MACD
163
+ exp1 = df['Close'].ewm(span=12, adjust=False).mean()
164
+ exp2 = df['Close'].ewm(span=26, adjust=False).mean()
165
+ df['MACD'] = exp1 - exp2
166
+ df['MACD_Signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
167
+ df['MACD_Hist'] = df['MACD'] - df['MACD_Signal']
168
+
169
+ # Moving Averages
170
+ df['SMA_20'] = df['Close'].rolling(window=20).mean()
171
+ df['SMA_50'] = df['Close'].rolling(window=50).mean()
172
+
173
+ return df
predictions.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from sklearn.ensemble import RandomForestClassifier
3
+ from sklearn.preprocessing import StandardScaler
4
+
5
+ def prepare_features(df):
6
+ """Prepare features for prediction model"""
7
+ features = df[['RSI', 'MACD', 'MACD_Signal', 'MACD_Hist']].copy()
8
+ features['SMA_Ratio'] = df['SMA_20'] / df['SMA_50']
9
+ features['Price_Change'] = df['Close'].pct_change()
10
+ features['Volatility'] = df['Close'].rolling(window=20).std()
11
+
12
+ return features.dropna()
13
+
14
+ def predict_movement(df, lookback_period=30):
15
+ """Predict price movement for next 30 minutes"""
16
+ features = prepare_features(df)
17
+ if len(features) < lookback_period:
18
+ return None, None
19
+
20
+ # Prepare training data
21
+ X = features[:-1].values
22
+ y = (df['Close'].shift(-1) > df['Close'])[:-1].values
23
+
24
+ # Train model
25
+ model = RandomForestClassifier(n_estimators=100, random_state=42)
26
+ model.fit(X, y)
27
+
28
+ # Make prediction
29
+ latest_features = features.iloc[-1:].values
30
+ prediction = model.predict(latest_features)[0]
31
+ probability = model.predict_proba(latest_features)[0]
32
+
33
+ return prediction, probability
trading.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yfinance as yf
2
+ import pandas as pd
3
+ from datetime import datetime, timedelta
4
+ import pytz
5
+
6
+ def is_market_open():
7
+ """Check if US market is currently open"""
8
+ now = datetime.now(pytz.timezone('America/New_York'))
9
+ # Market hours are 9:30 AM - 4:00 PM Eastern Time, Monday to Friday
10
+ is_weekday = now.weekday() < 5
11
+ is_market_hours = 9.5 <= now.hour + (now.minute / 60) <= 16
12
+
13
+ # Pre-market (4:00 AM - 9:30 AM) and After-hours (4:00 PM - 8:00 PM)
14
+ is_extended_hours = (4 <= now.hour + (now.minute / 60) <= 20)
15
+
16
+ return is_weekday and (is_market_hours or is_extended_hours)
17
+
18
+ def fetch_market_data(symbol, period='1d', interval='15m'):
19
+ """Fetch market data from Yahoo Finance"""
20
+ try:
21
+ # Check if we have a valid symbol
22
+ if not symbol:
23
+ raise Exception("Please enter a valid trading symbol")
24
+
25
+ # Always fetch 1 day of data to ensure we have enough history
26
+ ticker = yf.Ticker(symbol)
27
+ df = ticker.history(period='1d', interval='15m', prepost=True)
28
+
29
+ if df.empty:
30
+ raise Exception(f"No data available for {symbol}. Please verify the symbol is correct.")
31
+
32
+ # Get the market status
33
+ market_status = "Market Open" if is_market_open() else "Market Closed"
34
+
35
+ # Trim data based on selected timeframe
36
+ now = datetime.now(pytz.timezone('America/New_York'))
37
+ if period.endswith('m'):
38
+ minutes = int(period[:-1])
39
+ cutoff_time = now - timedelta(minutes=minutes)
40
+ else:
41
+ hours = int(period[:-1])
42
+ cutoff_time = now - timedelta(hours=hours)
43
+
44
+ df = df[df.index >= cutoff_time]
45
+
46
+ if df.empty:
47
+ raise Exception(f"No recent data available. {market_status}.")
48
+
49
+ return df
50
+
51
+ except Exception as e:
52
+ if "symbol may be delisted" in str(e).lower():
53
+ raise Exception(f"Symbol {symbol} not found. Please verify the symbol is correct.")
54
+ raise Exception(f"Data fetch error: {str(e)}")
55
+
56
+ def calculate_performance_metrics(predictions, actual):
57
+ """Calculate prediction performance metrics"""
58
+ if len(predictions) == 0 or len(actual) == 0:
59
+ return {
60
+ 'accuracy': 0,
61
+ 'success_rate': 0,
62
+ 'total_predictions': 0
63
+ }
64
+
65
+ correct_predictions = sum(p == a for p, a in zip(predictions, actual))
66
+
67
+ return {
68
+ 'accuracy': correct_predictions / len(predictions),
69
+ 'success_rate': correct_predictions / len(predictions) * 100,
70
+ 'total_predictions': len(predictions)
71
+ }