Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- patterns.py +173 -0
- predictions.py +33 -0
- trading.py +71 -0
patterns.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def identify_patterns(df):
|
5 |
+
"""Identify candlestick patterns in the data using basic calculations"""
|
6 |
+
patterns = pd.DataFrame(index=df.index)
|
7 |
+
|
8 |
+
# Calculate basic candlestick properties
|
9 |
+
body = df['Close'] - df['Open']
|
10 |
+
body_abs = abs(body)
|
11 |
+
upper_shadow = df['High'] - df[['Open', 'Close']].max(axis=1)
|
12 |
+
lower_shadow = df[['Open', 'Close']].min(axis=1) - df['Low']
|
13 |
+
|
14 |
+
# 1. Hammer Pattern
|
15 |
+
patterns['HAMMER'] = np.where(
|
16 |
+
(lower_shadow > 2 * body_abs) & # Long lower shadow
|
17 |
+
(upper_shadow <= 0.1 * body_abs) & # Minimal upper shadow
|
18 |
+
(body > 0), # Bullish close
|
19 |
+
1, 0
|
20 |
+
)
|
21 |
+
|
22 |
+
# 2. Inverted Hammer Pattern
|
23 |
+
patterns['INVERTED_HAMMER'] = np.where(
|
24 |
+
(upper_shadow > 2 * body_abs) & # Long upper shadow
|
25 |
+
(lower_shadow <= 0.1 * body_abs) & # Minimal lower shadow
|
26 |
+
(body > 0), # Bullish close
|
27 |
+
1, 0
|
28 |
+
)
|
29 |
+
|
30 |
+
# 3. Piercing Line Pattern
|
31 |
+
patterns['PIERCING_LINE'] = np.where(
|
32 |
+
(body.shift(1) < 0) & # Previous candle bearish
|
33 |
+
(body > 0) & # Current candle bullish
|
34 |
+
(df['Open'] < df['Close'].shift(1)) & # Opens below previous close
|
35 |
+
(df['Close'] > (df['Open'].shift(1) + df['Close'].shift(1)) / 2), # Closes above midpoint
|
36 |
+
1, 0
|
37 |
+
)
|
38 |
+
|
39 |
+
# 4. Bullish Engulfing Pattern
|
40 |
+
patterns['BULLISH_ENGULFING'] = np.where(
|
41 |
+
(body.shift(1) < 0) & # Previous candle bearish
|
42 |
+
(body > 0) & # Current candle bullish
|
43 |
+
(df['Open'] < df['Close'].shift(1)) & # Opens below previous close
|
44 |
+
(df['Close'] > df['Open'].shift(1)), # Closes above previous open
|
45 |
+
1, 0
|
46 |
+
)
|
47 |
+
|
48 |
+
# 5. Morning Star Pattern
|
49 |
+
patterns['MORNING_STAR'] = np.where(
|
50 |
+
(body.shift(2) < 0) & # First candle bearish
|
51 |
+
(abs(body.shift(1)) < abs(body.shift(2)) * 0.3) & # Second candle small
|
52 |
+
(body > 0) & # Third candle bullish
|
53 |
+
(df['Close'] > df['Close'].shift(2) * 0.5), # Closes above midpoint
|
54 |
+
1, 0
|
55 |
+
)
|
56 |
+
|
57 |
+
# 6. Three White Soldiers
|
58 |
+
patterns['THREE_WHITE_SOLDIERS'] = np.where(
|
59 |
+
(body > 0) & # Current candle bullish
|
60 |
+
(body.shift(1) > 0) & # Previous candle bullish
|
61 |
+
(body.shift(2) > 0) & # Two candles ago bullish
|
62 |
+
(df['Close'] > df['Close'].shift(1)) & # Each closes higher
|
63 |
+
(df['Close'].shift(1) > df['Close'].shift(2)),
|
64 |
+
1, 0
|
65 |
+
)
|
66 |
+
|
67 |
+
# 7. Bullish Harami
|
68 |
+
patterns['BULLISH_HARAMI'] = np.where(
|
69 |
+
(body.shift(1) < 0) & # Previous candle bearish
|
70 |
+
(body > 0) & # Current candle bullish
|
71 |
+
(df['Open'] > df['Close'].shift(1)) & # Opens inside previous body
|
72 |
+
(df['Close'] < df['Open'].shift(1)), # Closes inside previous body
|
73 |
+
1, 0
|
74 |
+
)
|
75 |
+
|
76 |
+
# 8. Hanging Man
|
77 |
+
patterns['HANGING_MAN'] = np.where(
|
78 |
+
(lower_shadow > 2 * body_abs) & # Long lower shadow
|
79 |
+
(upper_shadow <= 0.1 * body_abs) & # Minimal upper shadow
|
80 |
+
(body < 0), # Bearish close
|
81 |
+
1, 0
|
82 |
+
)
|
83 |
+
|
84 |
+
# 9. Dark Cloud Cover
|
85 |
+
patterns['DARK_CLOUD_COVER'] = np.where(
|
86 |
+
(body.shift(1) > 0) & # Previous candle bullish
|
87 |
+
(body < 0) & # Current candle bearish
|
88 |
+
(df['Open'] > df['High'].shift(1)) & # Opens above previous high
|
89 |
+
(df['Close'] < (df['Open'].shift(1) + df['Close'].shift(1)) / 2), # Closes below midpoint
|
90 |
+
1, 0
|
91 |
+
)
|
92 |
+
|
93 |
+
# 10. Bearish Engulfing
|
94 |
+
patterns['BEARISH_ENGULFING'] = np.where(
|
95 |
+
(body.shift(1) > 0) & # Previous candle bullish
|
96 |
+
(body < 0) & # Current candle bearish
|
97 |
+
(df['Open'] > df['Close'].shift(1)) & # Opens above previous close
|
98 |
+
(df['Close'] < df['Open'].shift(1)), # Closes below previous open
|
99 |
+
1, 0
|
100 |
+
)
|
101 |
+
|
102 |
+
# 11. Evening Star
|
103 |
+
patterns['EVENING_STAR'] = np.where(
|
104 |
+
(body.shift(2) > 0) & # First candle bullish
|
105 |
+
(abs(body.shift(1)) < abs(body.shift(2)) * 0.3) & # Second candle small
|
106 |
+
(body < 0) & # Third candle bearish
|
107 |
+
(df['Close'] < df['Close'].shift(2) * 0.5), # Closes below midpoint
|
108 |
+
1, 0
|
109 |
+
)
|
110 |
+
|
111 |
+
# 12. Three Black Crows
|
112 |
+
patterns['THREE_BLACK_CROWS'] = np.where(
|
113 |
+
(body < 0) & # Current candle bearish
|
114 |
+
(body.shift(1) < 0) & # Previous candle bearish
|
115 |
+
(body.shift(2) < 0) & # Two candles ago bearish
|
116 |
+
(df['Close'] < df['Close'].shift(1)) & # Each closes lower
|
117 |
+
(df['Close'].shift(1) < df['Close'].shift(2)),
|
118 |
+
1, 0
|
119 |
+
)
|
120 |
+
|
121 |
+
# 13. Shooting Star
|
122 |
+
patterns['SHOOTING_STAR'] = np.where(
|
123 |
+
(upper_shadow > 2 * body_abs) & # Long upper shadow
|
124 |
+
(lower_shadow <= 0.1 * body_abs) & # Minimal lower shadow
|
125 |
+
(body < 0), # Bearish close
|
126 |
+
1, 0
|
127 |
+
)
|
128 |
+
|
129 |
+
# 14. Doji Patterns
|
130 |
+
patterns['DOJI'] = np.where(
|
131 |
+
abs(body) <= 0.1 * (df['High'] - df['Low']), # Very small body
|
132 |
+
1, 0
|
133 |
+
)
|
134 |
+
|
135 |
+
# 15. Dragonfly Doji
|
136 |
+
patterns['DRAGONFLY_DOJI'] = np.where(
|
137 |
+
(abs(body) <= 0.1 * (df['High'] - df['Low'])) & # Doji body
|
138 |
+
(upper_shadow <= 0.1 * (df['High'] - df['Low'])) & # Minimal upper shadow
|
139 |
+
(lower_shadow >= 0.7 * (df['High'] - df['Low'])), # Long lower shadow
|
140 |
+
1, 0
|
141 |
+
)
|
142 |
+
|
143 |
+
# 16. Gravestone Doji
|
144 |
+
patterns['GRAVESTONE_DOJI'] = np.where(
|
145 |
+
(abs(body) <= 0.1 * (df['High'] - df['Low'])) & # Doji body
|
146 |
+
(lower_shadow <= 0.1 * (df['High'] - df['Low'])) & # Minimal lower shadow
|
147 |
+
(upper_shadow >= 0.7 * (df['High'] - df['Low'])), # Long upper shadow
|
148 |
+
1, 0
|
149 |
+
)
|
150 |
+
|
151 |
+
return patterns
|
152 |
+
|
153 |
+
def calculate_technical_indicators(df):
|
154 |
+
"""Calculate technical indicators for analysis"""
|
155 |
+
# RSI
|
156 |
+
delta = df['Close'].diff()
|
157 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
158 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
159 |
+
rs = gain / loss
|
160 |
+
df['RSI'] = 100 - (100 / (1 + rs))
|
161 |
+
|
162 |
+
# MACD
|
163 |
+
exp1 = df['Close'].ewm(span=12, adjust=False).mean()
|
164 |
+
exp2 = df['Close'].ewm(span=26, adjust=False).mean()
|
165 |
+
df['MACD'] = exp1 - exp2
|
166 |
+
df['MACD_Signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
|
167 |
+
df['MACD_Hist'] = df['MACD'] - df['MACD_Signal']
|
168 |
+
|
169 |
+
# Moving Averages
|
170 |
+
df['SMA_20'] = df['Close'].rolling(window=20).mean()
|
171 |
+
df['SMA_50'] = df['Close'].rolling(window=50).mean()
|
172 |
+
|
173 |
+
return df
|
predictions.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from sklearn.ensemble import RandomForestClassifier
|
3 |
+
from sklearn.preprocessing import StandardScaler
|
4 |
+
|
5 |
+
def prepare_features(df):
|
6 |
+
"""Prepare features for prediction model"""
|
7 |
+
features = df[['RSI', 'MACD', 'MACD_Signal', 'MACD_Hist']].copy()
|
8 |
+
features['SMA_Ratio'] = df['SMA_20'] / df['SMA_50']
|
9 |
+
features['Price_Change'] = df['Close'].pct_change()
|
10 |
+
features['Volatility'] = df['Close'].rolling(window=20).std()
|
11 |
+
|
12 |
+
return features.dropna()
|
13 |
+
|
14 |
+
def predict_movement(df, lookback_period=30):
|
15 |
+
"""Predict price movement for next 30 minutes"""
|
16 |
+
features = prepare_features(df)
|
17 |
+
if len(features) < lookback_period:
|
18 |
+
return None, None
|
19 |
+
|
20 |
+
# Prepare training data
|
21 |
+
X = features[:-1].values
|
22 |
+
y = (df['Close'].shift(-1) > df['Close'])[:-1].values
|
23 |
+
|
24 |
+
# Train model
|
25 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
26 |
+
model.fit(X, y)
|
27 |
+
|
28 |
+
# Make prediction
|
29 |
+
latest_features = features.iloc[-1:].values
|
30 |
+
prediction = model.predict(latest_features)[0]
|
31 |
+
probability = model.predict_proba(latest_features)[0]
|
32 |
+
|
33 |
+
return prediction, probability
|
trading.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
import pandas as pd
|
3 |
+
from datetime import datetime, timedelta
|
4 |
+
import pytz
|
5 |
+
|
6 |
+
def is_market_open():
|
7 |
+
"""Check if US market is currently open"""
|
8 |
+
now = datetime.now(pytz.timezone('America/New_York'))
|
9 |
+
# Market hours are 9:30 AM - 4:00 PM Eastern Time, Monday to Friday
|
10 |
+
is_weekday = now.weekday() < 5
|
11 |
+
is_market_hours = 9.5 <= now.hour + (now.minute / 60) <= 16
|
12 |
+
|
13 |
+
# Pre-market (4:00 AM - 9:30 AM) and After-hours (4:00 PM - 8:00 PM)
|
14 |
+
is_extended_hours = (4 <= now.hour + (now.minute / 60) <= 20)
|
15 |
+
|
16 |
+
return is_weekday and (is_market_hours or is_extended_hours)
|
17 |
+
|
18 |
+
def fetch_market_data(symbol, period='1d', interval='15m'):
|
19 |
+
"""Fetch market data from Yahoo Finance"""
|
20 |
+
try:
|
21 |
+
# Check if we have a valid symbol
|
22 |
+
if not symbol:
|
23 |
+
raise Exception("Please enter a valid trading symbol")
|
24 |
+
|
25 |
+
# Always fetch 1 day of data to ensure we have enough history
|
26 |
+
ticker = yf.Ticker(symbol)
|
27 |
+
df = ticker.history(period='1d', interval='15m', prepost=True)
|
28 |
+
|
29 |
+
if df.empty:
|
30 |
+
raise Exception(f"No data available for {symbol}. Please verify the symbol is correct.")
|
31 |
+
|
32 |
+
# Get the market status
|
33 |
+
market_status = "Market Open" if is_market_open() else "Market Closed"
|
34 |
+
|
35 |
+
# Trim data based on selected timeframe
|
36 |
+
now = datetime.now(pytz.timezone('America/New_York'))
|
37 |
+
if period.endswith('m'):
|
38 |
+
minutes = int(period[:-1])
|
39 |
+
cutoff_time = now - timedelta(minutes=minutes)
|
40 |
+
else:
|
41 |
+
hours = int(period[:-1])
|
42 |
+
cutoff_time = now - timedelta(hours=hours)
|
43 |
+
|
44 |
+
df = df[df.index >= cutoff_time]
|
45 |
+
|
46 |
+
if df.empty:
|
47 |
+
raise Exception(f"No recent data available. {market_status}.")
|
48 |
+
|
49 |
+
return df
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
if "symbol may be delisted" in str(e).lower():
|
53 |
+
raise Exception(f"Symbol {symbol} not found. Please verify the symbol is correct.")
|
54 |
+
raise Exception(f"Data fetch error: {str(e)}")
|
55 |
+
|
56 |
+
def calculate_performance_metrics(predictions, actual):
|
57 |
+
"""Calculate prediction performance metrics"""
|
58 |
+
if len(predictions) == 0 or len(actual) == 0:
|
59 |
+
return {
|
60 |
+
'accuracy': 0,
|
61 |
+
'success_rate': 0,
|
62 |
+
'total_predictions': 0
|
63 |
+
}
|
64 |
+
|
65 |
+
correct_predictions = sum(p == a for p, a in zip(predictions, actual))
|
66 |
+
|
67 |
+
return {
|
68 |
+
'accuracy': correct_predictions / len(predictions),
|
69 |
+
'success_rate': correct_predictions / len(predictions) * 100,
|
70 |
+
'total_predictions': len(predictions)
|
71 |
+
}
|