File size: 3,552 Bytes
54ca21d
6915385
 
 
 
 
 
54ca21d
 
6915385
 
 
 
 
54ca21d
6915385
54ca21d
6915385
54ca21d
6915385
 
 
 
 
 
54ca21d
6915385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "THUDM/glm-4-9b-chat"
MODEL_ID2 = "THUDM/glm-4-9b-chat-1m"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODELS.split("/")[-1]

TITLE = "<h1><center>GLM-4-9B</center></h1>"

DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></center></h3>'

CSS = """
.duplicate-button {
  margin: auto !important;
  color: white !important;
  background: black !important;
  border-radius: 100vh !important;
}
"""

model = AutoModelForCausalLM.from_pretrained(
        MODELS,
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        trust_remote_code=True,
        ).to(0).eval()

tokenizer = AutoTokenizer.from_pretrained(MODELS,trust_remote_code=True)


@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_length: int):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message})

    print(f"Conversation is -\n{conversation}")
    
    input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        max_length=max_length,
        streamer=streamer,
        do_sample=True,
        top_k=1,
        temperature=temperature,
        repetition_penalty=1.2,
    )
    gen_kwargs = {**input_ids, **generate_kwargs}

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield buffer
 



chatbot = gr.Chatbot(height=450)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max Length",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()