import os import streamlit as st from PIL import Image # import pytesseract from paddleocr import PaddleOCR, draw_ocr from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_groq import ChatGroq import numpy as np # import pytesseract # import easyocr GROQ_API_KEY = os.environ['GROQ_API_KEY '] # llm = ChatGroq(temperature=0, groq_api_key=GROQ_API_KEY, model_name="mixtral-8x7b-32768") llm = ChatGroq(temperature=0, groq_api_key=GROQ_API_KEY, model_name="llama3-groq-70b-8192-tool-use-preview") ocr = PaddleOCR(use_angle_cls=True, lang='en') # Function to extract text from an image using OCR def extract_text_from_image(image): try: # Convert PIL Image to NumPy array image_np = np.array(image) # Perform OCR using PaddleOCR results = ocr.ocr(image_np, cls=True) # Extract text from results extracted_text = "" for line in results: for word_info in line: extracted_text += word_info[1][0] + " " return extracted_text.strip() if extracted_text else "No text found in the image." except Exception as e: return f"Error processing image: {e}" # try: # # Use pytesseract to do OCR on the image # # text = pytesseract.image_to_string(image) # text = pytesseract.image_to_string(image, lang='eng', config='--psm 7') # return text.strip() # except Exception as e: # return f"Error processing image: {e}" # Function to solve a math problem using Groq API and Mistral LLM def solve_math_problem_with_groq(problem_text): try: # Initialize the Groq LLM with the Mistral model # Create a prompt template for solving the math problem prompt_template = PromptTemplate( input_variables=["problem"], template="Solve the following math problem:\n\n{problem}\n\n" ) # Create an LLM chain with the prompt template llm_chain = LLMChain( llm=llm, prompt=prompt_template ) # Run the LLM chain with the problem text solution = llm_chain.run(problem=problem_text) return solution.strip() except Exception as e: return f"Error solving the problem: {e}" # Streamlit app def main(): st.title("Math Solver using ChatGroq, Mistral, and LangChain") st.write('Developed by Ravi Shankar Prasad- https://www.linkedin.com/in/ravi-shankar-prasad-371825101/') # Input method selection input_method = st.radio("Select input method:", ("Upload Image", "Enter Text")) problem_text = "" if input_method == "Upload Image": # Image upload uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: # Display uploaded image image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) # Extract text from image problem_text = extract_text_from_image(image) if problem_text: st.write("Extracted Text:", problem_text) else: st.write("No text found in the image. Please upload a clearer image.") else: # Text input problem_text = st.text_area("Enter math problem:") if problem_text: if st.button("Solve"): # Solve the math problem using Groq and Mistral solution = solve_math_problem_with_groq(problem_text) st.write("Solution:", solution) if __name__ == "__main__": main()