ravikumar101 commited on
Commit
f0406ee
·
verified ·
1 Parent(s): 5688e62

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -9
app.py CHANGED
@@ -1,30 +1,86 @@
1
  import gradio as gr
2
  import torch
3
  from diffusers import StableDiffusionInpaintPipeline
4
-
5
- # pipe = StableDiffusionInpaintPipeline.from_pretrained(
6
- # "stabilityai/stable-diffusion-2-inpainting",
7
- # torch_dtype=torch.float16,
8
- # )
9
  from PIL import Image
10
 
11
- def process_image(image: Image.Image, prompt: str, slider_value: int) -> Image.Image:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # Placeholder function for processing
13
  # Replace this with your actual processing logic
14
  # For example, modifying the image based on the slider value and prompt
15
- processed_image = image.copy() # Just returning a copy for now
 
 
 
 
16
  return processed_image
17
 
18
  with gr.Blocks() as demo:
19
  # Title at the top center
20
- gr.Markdown("<h1 style='text-align: center;'>Image Inprinting</h1>")
21
 
22
  with gr.Row():
23
  with gr.Column(scale=1):
24
  # Image upload on the left
25
  image_input = gr.Image(type='pil', label='Upload Image')
26
  # Slider below the image upload
27
- slider = gr.Slider(minimum=1, maximum=4, step=1, value=1, label='Select Zoom')
28
  # Textbox for prompt
29
  prompt_input = gr.Textbox(label='Enter Prompt')
30
  # Submit button
 
1
  import gradio as gr
2
  import torch
3
  from diffusers import StableDiffusionInpaintPipeline
4
+ import cv2
 
 
 
 
5
  from PIL import Image
6
 
7
+ pipe = StableDiffusionInpaintPipeline.from_pretrained(
8
+ "stabilityai/stable-diffusion-2-inpainting",
9
+ torch_dtype=torch.float16,
10
+ )
11
+
12
+ def zoom_out(image, n):
13
+ # Original dimensions
14
+ original_width, original_height = image.size
15
+ # Calculate new dimensions after shrinking
16
+ new_width = int(original_width // n)
17
+ new_height = int(original_height // n)
18
+ print(new_width,new_height)
19
+ # Resize the image (shrink the object)
20
+ resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
21
+
22
+ # Create a new white canvas that is n times larger than the original
23
+ new_canvas_width = original_width
24
+ new_canvas_height = original_height
25
+ new_image = Image.new("RGB", (new_canvas_width, new_canvas_height), "white")
26
+
27
+ # Calculate the position to paste the resized object in the center
28
+ x_offset = (new_canvas_width - new_width) // 2
29
+ y_offset = (new_canvas_height - new_height) // 2
30
+
31
+ # Paste the resized image onto the center of the new canvas
32
+ new_image.paste(resized_image, (x_offset, y_offset))
33
+ return new_image
34
+
35
+
36
+ def create_contour_mask(image, tolerance=10):
37
+ # Convert the image to a numpy array
38
+ image_array = np.array(image)
39
+
40
+ # Define a tolerance range around white
41
+ lower_bound = np.array([255 - tolerance] * 3)
42
+ upper_bound = np.array([255] * 3)
43
+
44
+ # Create a mask: black for background, white for object
45
+ mask = np.ones((image_array.shape[0], image_array.shape[1]), dtype=np.uint8) * 255
46
+ non_white_pixels = np.any((image_array < lower_bound) | (image_array > upper_bound), axis=-1)
47
+ mask[non_white_pixels] = 0 # Non-white pixels become black in the mask
48
+
49
+ # Perform dilation to fill in any gaps (like white text within the object)
50
+ kernel = np.ones((2, 2), np.uint8) # You can adjust the size of the kernel as needed
51
+ dilated_mask = cv2.dilate(mask, kernel, iterations=2)
52
+
53
+ # Invert the dilated mask to get the final object mask
54
+ # object_mask = 255 - dilated_mask
55
+
56
+ # Convert to PIL image for easier visualization and further processing
57
+ mask_image = Image.fromarray(dilated_mask)
58
+
59
+ return mask_image
60
+
61
+
62
+
63
+ def process_image(image: Image.Image, prompt: str, slider_value: float) -> Image.Image:
64
  # Placeholder function for processing
65
  # Replace this with your actual processing logic
66
  # For example, modifying the image based on the slider value and prompt
67
+ if slider_value != 1:
68
+ image = zoom_out(image,slider_value)
69
+ mask = create_contour_mask(image,10)
70
+ # processed_image = image.copy() # Just returning a copy for now
71
+ processed_image = pipe(prompt=prompt, image=image_big, mask_image=contour_mask).images[0]
72
  return processed_image
73
 
74
  with gr.Blocks() as demo:
75
  # Title at the top center
76
+ gr.Markdown("<h1 style='text-align: center;'>Imagine Backgrounds</h1>")
77
 
78
  with gr.Row():
79
  with gr.Column(scale=1):
80
  # Image upload on the left
81
  image_input = gr.Image(type='pil', label='Upload Image')
82
  # Slider below the image upload
83
+ slider = gr.Slider(minimum=1, maximum=4, step=0.2, value=1, label='Select Zoom')
84
  # Textbox for prompt
85
  prompt_input = gr.Textbox(label='Enter Prompt')
86
  # Submit button