LovnishVerma's picture
Update app.py
9cd5b33 verified
raw
history blame
5.01 kB
import face_recognition
import os
import cv2
import numpy as np
import time
from keras.models import load_model
from PIL import Image
import streamlit as st
# Streamlit UI Setup
st.markdown("<h1 style='text-align: center;'>Emotion & Face Recognition</h1>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
# Known faces folder path
KNOWN_FACES_DIR = "known_faces"
# Load emotion detection model
@st.cache_resource
def load_emotion_model():
return load_model("CNN_Model_acc_75.h5")
emotion_model = load_emotion_model()
# Face detection model
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
img_shape = 48
# Known faces dictionary
known_faces = {"names": [], "encodings": []}
def load_faces_from_folder(folder_path):
"""
Load known faces from a folder, using filenames as names.
"""
for filename in os.listdir(folder_path):
if filename.endswith(('.jpg', '.jpeg', '.png')):
name = os.path.splitext(filename)[0]
image_path = os.path.join(folder_path, filename)
# Load and encode the image
image = face_recognition.load_image_file(image_path)
face_encodings = face_recognition.face_encodings(image)
if face_encodings: # Ensure a face is found
known_faces["names"].append(name)
known_faces["encodings"].append(face_encodings[0])
print(f"Loaded face for {name}")
else:
print(f"No face detected in {filename}")
# Load known faces
load_faces_from_folder(KNOWN_FACES_DIR)
def recognize_face(unknown_face_encoding):
"""
Compare an unknown face with the known faces and return the closest match.
"""
matches = face_recognition.compare_faces(known_faces["encodings"], unknown_face_encoding, tolerance=0.6)
if True in matches:
match_index = matches.index(True)
return known_faces["names"][match_index]
return "Unknown"
def detect_emotion(face_image):
"""
Predict the emotion of a face using the emotion detection model.
"""
face_resized = cv2.resize(face_image, (img_shape, img_shape))
face_resized = np.expand_dims(face_resized, axis=0)
face_resized = face_resized / 255.0 # Normalize the image
predictions = emotion_model.predict(face_resized)
return emotion_labels[np.argmax(predictions)]
def process_frame_with_recognition_and_emotion(frame):
"""
Detect faces, recognize names, and detect emotions in the frame.
"""
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
# Get the face area
face_image = rgb_frame[y:y+h, x:x+w]
face_encodings = face_recognition.face_encodings(face_image)
if face_encodings:
name = recognize_face(face_encodings[0]) # Recognize the face
else:
name = "Unknown"
# Predict emotion
emotion = detect_emotion(frame[y:y+h, x:x+w])
# Display name and emotion
display_text = f"{name} is Feeling {emotion}"
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, display_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
return frame
def video_feed(video_source):
"""
Display video feed with face recognition and emotion detection.
"""
frame_placeholder = st.empty() # Placeholder for updating frames
while True:
ret, frame = video_source.read()
if not ret:
break
frame = process_frame_with_recognition_and_emotion(frame)
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
# Sidebar options
upload_choice = st.sidebar.radio("Choose input source", ["Upload Image", "Upload Video", "Camera"])
if upload_choice == "Camera":
video_source = cv2.VideoCapture(0) # Access webcam
video_feed(video_source)
elif upload_choice == "Upload Video":
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
if uploaded_video:
with tempfile.NamedTemporaryFile(delete=False) as tfile:
tfile.write(uploaded_video.read())
video_source = cv2.VideoCapture(tfile.name)
video_feed(video_source)
elif upload_choice == "Upload Image":
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
if uploaded_image:
image = Image.open(uploaded_image)
frame = np.array(image)
frame = process_frame_with_recognition_and_emotion(frame)
st.image(frame, caption="Processed Image", use_column_width=True)