Update app.py
Browse files
app.py
CHANGED
@@ -1,138 +1,119 @@
|
|
1 |
-
import
|
2 |
-
import os
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
import time
|
|
|
6 |
from keras.models import load_model
|
|
|
7 |
from PIL import Image
|
8 |
-
import
|
9 |
|
10 |
-
#
|
11 |
-
st.markdown("<h1 style='text-align: center;'>Emotion
|
|
|
|
|
12 |
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
|
13 |
|
14 |
-
|
15 |
-
KNOWN_FACES_DIR = "known_faces"
|
16 |
|
17 |
-
# Load emotion
|
18 |
@st.cache_resource
|
19 |
def load_emotion_model():
|
20 |
-
|
|
|
21 |
|
22 |
-
|
|
|
23 |
|
24 |
-
#
|
25 |
-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
26 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
27 |
-
img_shape = 48
|
28 |
|
29 |
-
#
|
30 |
-
known_faces =
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
name = os.path.splitext(filename)[0]
|
39 |
-
image_path = os.path.join(folder_path, filename)
|
40 |
-
|
41 |
-
# Load and encode the image
|
42 |
image = face_recognition.load_image_file(image_path)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
def recognize_face(unknown_face_encoding):
|
56 |
-
"""
|
57 |
-
Compare an unknown face with the known faces and return the closest match.
|
58 |
-
"""
|
59 |
-
matches = face_recognition.compare_faces(known_faces["encodings"], unknown_face_encoding, tolerance=0.6)
|
60 |
-
if True in matches:
|
61 |
-
match_index = matches.index(True)
|
62 |
-
return known_faces["names"][match_index]
|
63 |
-
return "Unknown"
|
64 |
-
|
65 |
-
def detect_emotion(face_image):
|
66 |
-
"""
|
67 |
-
Predict the emotion of a face using the emotion detection model.
|
68 |
-
"""
|
69 |
-
face_resized = cv2.resize(face_image, (img_shape, img_shape))
|
70 |
-
face_resized = np.expand_dims(face_resized, axis=0)
|
71 |
-
face_resized = face_resized / 255.0 # Normalize the image
|
72 |
-
predictions = emotion_model.predict(face_resized)
|
73 |
-
return emotion_labels[np.argmax(predictions)]
|
74 |
-
|
75 |
-
def process_frame_with_recognition_and_emotion(frame):
|
76 |
-
"""
|
77 |
-
Detect faces, recognize names, and detect emotions in the frame.
|
78 |
-
"""
|
79 |
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
80 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
81 |
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
82 |
|
83 |
for (x, y, w, h) in faces:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
99 |
-
cv2.putText(frame,
|
100 |
|
101 |
return frame
|
102 |
|
|
|
103 |
def video_feed(video_source):
|
104 |
-
|
105 |
-
Display video feed with face recognition and emotion detection.
|
106 |
-
"""
|
107 |
-
frame_placeholder = st.empty() # Placeholder for updating frames
|
108 |
|
109 |
while True:
|
110 |
ret, frame = video_source.read()
|
111 |
if not ret:
|
112 |
break
|
113 |
|
114 |
-
frame =
|
|
|
|
|
115 |
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
|
116 |
|
117 |
-
# Sidebar
|
118 |
-
upload_choice = st.sidebar.radio("Choose input source", ["Upload
|
119 |
|
120 |
if upload_choice == "Camera":
|
121 |
-
|
|
|
122 |
video_feed(video_source)
|
123 |
|
124 |
elif upload_choice == "Upload Video":
|
125 |
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
|
126 |
if uploaded_video:
|
|
|
127 |
with tempfile.NamedTemporaryFile(delete=False) as tfile:
|
128 |
tfile.write(uploaded_video.read())
|
129 |
video_source = cv2.VideoCapture(tfile.name)
|
130 |
video_feed(video_source)
|
131 |
|
132 |
elif upload_choice == "Upload Image":
|
133 |
-
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
134 |
if uploaded_image:
|
135 |
image = Image.open(uploaded_image)
|
136 |
frame = np.array(image)
|
137 |
-
frame =
|
138 |
-
st.image(frame, caption=
|
|
|
|
|
|
1 |
+
import streamlit as st
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import time
|
5 |
+
import os
|
6 |
from keras.models import load_model
|
7 |
+
import face_recognition
|
8 |
from PIL import Image
|
9 |
+
import tempfile
|
10 |
|
11 |
+
# Larger title
|
12 |
+
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)
|
13 |
+
|
14 |
+
# Smaller subtitle
|
15 |
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
|
16 |
|
17 |
+
start = time.time()
|
|
|
18 |
|
19 |
+
# Load the emotion model
|
20 |
@st.cache_resource
|
21 |
def load_emotion_model():
|
22 |
+
model = load_model('CNN_Model_acc_75.h5') # Ensure this file is in your Space
|
23 |
+
return model
|
24 |
|
25 |
+
model = load_emotion_model()
|
26 |
+
print("time taken to load model: ", time.time() - start)
|
27 |
|
28 |
+
# Emotion labels
|
|
|
29 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
|
|
30 |
|
31 |
+
# Load known faces (from images in a folder)
|
32 |
+
known_faces = []
|
33 |
+
known_names = []
|
34 |
+
|
35 |
+
def load_known_faces():
|
36 |
+
folder_path = "known_faces" # Place your folder with known faces here
|
37 |
+
for image_name in os.listdir(folder_path):
|
38 |
+
if image_name.endswith(('.jpg', '.jpeg', '.png')):
|
39 |
+
image_path = os.path.join(folder_path, image_name)
|
|
|
|
|
|
|
|
|
40 |
image = face_recognition.load_image_file(image_path)
|
41 |
+
encoding = face_recognition.face_encodings(image)
|
42 |
+
if encoding:
|
43 |
+
known_faces.append(encoding[0])
|
44 |
+
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
|
45 |
+
load_known_faces()
|
46 |
+
|
47 |
+
# Face detection using OpenCV
|
48 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
49 |
+
img_shape = 48
|
50 |
+
|
51 |
+
def process_frame(frame):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
|
53 |
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
54 |
|
55 |
for (x, y, w, h) in faces:
|
56 |
+
roi_gray = gray_frame[y:y+h, x:x+w]
|
57 |
+
roi_color = frame[y:y+h, x:x+w]
|
58 |
+
face_roi = cv2.resize(roi_color, (img_shape, img_shape))
|
59 |
+
face_roi = np.expand_dims(face_roi, axis=0)
|
60 |
+
face_roi = face_roi / float(img_shape)
|
61 |
+
|
62 |
+
# Emotion detection
|
63 |
+
predictions = model.predict(face_roi)
|
64 |
+
emotion = emotion_labels[np.argmax(predictions[0])]
|
65 |
+
|
66 |
+
# Face recognition
|
67 |
+
face_encoding = face_recognition.face_encodings(frame, [(y, x+w, y+h, x)])[0] # Get face encoding
|
68 |
+
matches = face_recognition.compare_faces(known_faces, face_encoding)
|
69 |
+
name = "Unknown"
|
70 |
+
if True in matches:
|
71 |
+
first_match_index = matches.index(True)
|
72 |
+
name = known_names[first_match_index]
|
73 |
+
|
74 |
+
# Draw bounding box and label on the frame
|
75 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
76 |
+
cv2.putText(frame, f"{name} - {emotion}", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
77 |
|
78 |
return frame
|
79 |
|
80 |
+
# Video feed
|
81 |
def video_feed(video_source):
|
82 |
+
frame_placeholder = st.empty() # This placeholder will be used to replace frames in-place
|
|
|
|
|
|
|
83 |
|
84 |
while True:
|
85 |
ret, frame = video_source.read()
|
86 |
if not ret:
|
87 |
break
|
88 |
|
89 |
+
frame = process_frame(frame)
|
90 |
+
|
91 |
+
# Display the frame in the placeholder
|
92 |
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
|
93 |
|
94 |
+
# Sidebar for video or image upload
|
95 |
+
upload_choice = st.sidebar.radio("Choose input source", ["Upload Video", "Upload Image", "Camera"])
|
96 |
|
97 |
if upload_choice == "Camera":
|
98 |
+
# Access camera
|
99 |
+
video_source = cv2.VideoCapture(0)
|
100 |
video_feed(video_source)
|
101 |
|
102 |
elif upload_choice == "Upload Video":
|
103 |
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
|
104 |
if uploaded_video:
|
105 |
+
# Temporarily save the video to disk
|
106 |
with tempfile.NamedTemporaryFile(delete=False) as tfile:
|
107 |
tfile.write(uploaded_video.read())
|
108 |
video_source = cv2.VideoCapture(tfile.name)
|
109 |
video_feed(video_source)
|
110 |
|
111 |
elif upload_choice == "Upload Image":
|
112 |
+
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"])
|
113 |
if uploaded_image:
|
114 |
image = Image.open(uploaded_image)
|
115 |
frame = np.array(image)
|
116 |
+
frame = process_frame(frame)
|
117 |
+
st.image(frame, caption='Processed Image', use_column_width=True)
|
118 |
+
|
119 |
+
st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")
|