LovnishVerma commited on
Commit
2d75c41
·
verified ·
1 Parent(s): 4366b8f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -89
app.py CHANGED
@@ -1,138 +1,119 @@
1
- import face_recognition
2
- import os
3
  import cv2
4
  import numpy as np
5
  import time
 
6
  from keras.models import load_model
 
7
  from PIL import Image
8
- import streamlit as st
9
 
10
- # Streamlit UI Setup
11
- st.markdown("<h1 style='text-align: center;'>Emotion & Face Recognition</h1>", unsafe_allow_html=True)
 
 
12
  st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
13
 
14
- # Known faces folder path
15
- KNOWN_FACES_DIR = "known_faces"
16
 
17
- # Load emotion detection model
18
  @st.cache_resource
19
  def load_emotion_model():
20
- return load_model("CNN_Model_acc_75.h5")
 
21
 
22
- emotion_model = load_emotion_model()
 
23
 
24
- # Face detection model
25
- face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
26
  emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
27
- img_shape = 48
28
 
29
- # Known faces dictionary
30
- known_faces = {"names": [], "encodings": []}
31
-
32
- def load_faces_from_folder(folder_path):
33
- """
34
- Load known faces from a folder, using filenames as names.
35
- """
36
- for filename in os.listdir(folder_path):
37
- if filename.endswith(('.jpg', '.jpeg', '.png')):
38
- name = os.path.splitext(filename)[0]
39
- image_path = os.path.join(folder_path, filename)
40
-
41
- # Load and encode the image
42
  image = face_recognition.load_image_file(image_path)
43
- face_encodings = face_recognition.face_encodings(image)
44
-
45
- if face_encodings: # Ensure a face is found
46
- known_faces["names"].append(name)
47
- known_faces["encodings"].append(face_encodings[0])
48
- print(f"Loaded face for {name}")
49
- else:
50
- print(f"No face detected in {filename}")
51
-
52
- # Load known faces
53
- load_faces_from_folder(KNOWN_FACES_DIR)
54
-
55
- def recognize_face(unknown_face_encoding):
56
- """
57
- Compare an unknown face with the known faces and return the closest match.
58
- """
59
- matches = face_recognition.compare_faces(known_faces["encodings"], unknown_face_encoding, tolerance=0.6)
60
- if True in matches:
61
- match_index = matches.index(True)
62
- return known_faces["names"][match_index]
63
- return "Unknown"
64
-
65
- def detect_emotion(face_image):
66
- """
67
- Predict the emotion of a face using the emotion detection model.
68
- """
69
- face_resized = cv2.resize(face_image, (img_shape, img_shape))
70
- face_resized = np.expand_dims(face_resized, axis=0)
71
- face_resized = face_resized / 255.0 # Normalize the image
72
- predictions = emotion_model.predict(face_resized)
73
- return emotion_labels[np.argmax(predictions)]
74
-
75
- def process_frame_with_recognition_and_emotion(frame):
76
- """
77
- Detect faces, recognize names, and detect emotions in the frame.
78
- """
79
  gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
80
- rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
81
  faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
82
 
83
  for (x, y, w, h) in faces:
84
- # Get the face area
85
- face_image = rgb_frame[y:y+h, x:x+w]
86
- face_encodings = face_recognition.face_encodings(face_image)
87
-
88
- if face_encodings:
89
- name = recognize_face(face_encodings[0]) # Recognize the face
90
- else:
91
- name = "Unknown"
92
-
93
- # Predict emotion
94
- emotion = detect_emotion(frame[y:y+h, x:x+w])
95
-
96
- # Display name and emotion
97
- display_text = f"{name} is Feeling {emotion}"
 
 
 
 
 
98
  cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
99
- cv2.putText(frame, display_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
100
 
101
  return frame
102
 
 
103
  def video_feed(video_source):
104
- """
105
- Display video feed with face recognition and emotion detection.
106
- """
107
- frame_placeholder = st.empty() # Placeholder for updating frames
108
 
109
  while True:
110
  ret, frame = video_source.read()
111
  if not ret:
112
  break
113
 
114
- frame = process_frame_with_recognition_and_emotion(frame)
 
 
115
  frame_placeholder.image(frame, channels="BGR", use_column_width=True)
116
 
117
- # Sidebar options
118
- upload_choice = st.sidebar.radio("Choose input source", ["Upload Image", "Upload Video", "Camera"])
119
 
120
  if upload_choice == "Camera":
121
- video_source = cv2.VideoCapture(0) # Access webcam
 
122
  video_feed(video_source)
123
 
124
  elif upload_choice == "Upload Video":
125
  uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
126
  if uploaded_video:
 
127
  with tempfile.NamedTemporaryFile(delete=False) as tfile:
128
  tfile.write(uploaded_video.read())
129
  video_source = cv2.VideoCapture(tfile.name)
130
  video_feed(video_source)
131
 
132
  elif upload_choice == "Upload Image":
133
- uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
134
  if uploaded_image:
135
  image = Image.open(uploaded_image)
136
  frame = np.array(image)
137
- frame = process_frame_with_recognition_and_emotion(frame)
138
- st.image(frame, caption="Processed Image", use_column_width=True)
 
 
 
1
+ import streamlit as st
 
2
  import cv2
3
  import numpy as np
4
  import time
5
+ import os
6
  from keras.models import load_model
7
+ import face_recognition
8
  from PIL import Image
9
+ import tempfile
10
 
11
+ # Larger title
12
+ st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)
13
+
14
+ # Smaller subtitle
15
  st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
16
 
17
+ start = time.time()
 
18
 
19
+ # Load the emotion model
20
  @st.cache_resource
21
  def load_emotion_model():
22
+ model = load_model('CNN_Model_acc_75.h5') # Ensure this file is in your Space
23
+ return model
24
 
25
+ model = load_emotion_model()
26
+ print("time taken to load model: ", time.time() - start)
27
 
28
+ # Emotion labels
 
29
  emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
 
30
 
31
+ # Load known faces (from images in a folder)
32
+ known_faces = []
33
+ known_names = []
34
+
35
+ def load_known_faces():
36
+ folder_path = "known_faces" # Place your folder with known faces here
37
+ for image_name in os.listdir(folder_path):
38
+ if image_name.endswith(('.jpg', '.jpeg', '.png')):
39
+ image_path = os.path.join(folder_path, image_name)
 
 
 
 
40
  image = face_recognition.load_image_file(image_path)
41
+ encoding = face_recognition.face_encodings(image)
42
+ if encoding:
43
+ known_faces.append(encoding[0])
44
+ known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
45
+ load_known_faces()
46
+
47
+ # Face detection using OpenCV
48
+ face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
49
+ img_shape = 48
50
+
51
+ def process_frame(frame):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 
53
  faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
54
 
55
  for (x, y, w, h) in faces:
56
+ roi_gray = gray_frame[y:y+h, x:x+w]
57
+ roi_color = frame[y:y+h, x:x+w]
58
+ face_roi = cv2.resize(roi_color, (img_shape, img_shape))
59
+ face_roi = np.expand_dims(face_roi, axis=0)
60
+ face_roi = face_roi / float(img_shape)
61
+
62
+ # Emotion detection
63
+ predictions = model.predict(face_roi)
64
+ emotion = emotion_labels[np.argmax(predictions[0])]
65
+
66
+ # Face recognition
67
+ face_encoding = face_recognition.face_encodings(frame, [(y, x+w, y+h, x)])[0] # Get face encoding
68
+ matches = face_recognition.compare_faces(known_faces, face_encoding)
69
+ name = "Unknown"
70
+ if True in matches:
71
+ first_match_index = matches.index(True)
72
+ name = known_names[first_match_index]
73
+
74
+ # Draw bounding box and label on the frame
75
  cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
76
+ cv2.putText(frame, f"{name} - {emotion}", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
77
 
78
  return frame
79
 
80
+ # Video feed
81
  def video_feed(video_source):
82
+ frame_placeholder = st.empty() # This placeholder will be used to replace frames in-place
 
 
 
83
 
84
  while True:
85
  ret, frame = video_source.read()
86
  if not ret:
87
  break
88
 
89
+ frame = process_frame(frame)
90
+
91
+ # Display the frame in the placeholder
92
  frame_placeholder.image(frame, channels="BGR", use_column_width=True)
93
 
94
+ # Sidebar for video or image upload
95
+ upload_choice = st.sidebar.radio("Choose input source", ["Upload Video", "Upload Image", "Camera"])
96
 
97
  if upload_choice == "Camera":
98
+ # Access camera
99
+ video_source = cv2.VideoCapture(0)
100
  video_feed(video_source)
101
 
102
  elif upload_choice == "Upload Video":
103
  uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
104
  if uploaded_video:
105
+ # Temporarily save the video to disk
106
  with tempfile.NamedTemporaryFile(delete=False) as tfile:
107
  tfile.write(uploaded_video.read())
108
  video_source = cv2.VideoCapture(tfile.name)
109
  video_feed(video_source)
110
 
111
  elif upload_choice == "Upload Image":
112
+ uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"])
113
  if uploaded_image:
114
  image = Image.open(uploaded_image)
115
  frame = np.array(image)
116
+ frame = process_frame(frame)
117
+ st.image(frame, caption='Processed Image', use_column_width=True)
118
+
119
+ st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")