Spaces:
Build error
Build error
File size: 2,738 Bytes
9f2d980 a14afc2 f5dde97 9f2d980 cb84637 9f2d980 cb84637 9f2d980 cb84637 9f2d980 cb84637 a768701 9f2d980 9f0569d 9f2d980 4167f47 0ef30eb 9f2d980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
from PIL import Image
import numpy as np
import requests
import os
import cv2
import face_recognition
import streamlit as st
#p1 = "raavi.jpg"
#p2 = "jivan.jpeg"
# p3 = "sejal.jpeg"
st.title("Face Recognition")
Images = []
classnames = []
# Read images and train the face_recognition package
# img1 = cv2.imread(p1)
# Images.append(img1)
# classnames.append("Ravi")
# img2 = cv2.imread(p2)
# Images.append(img2)
# classnames.append("Sirwan sir")
# img3 = cv2.imread(p3)
# Images.append(img3)
# classnames.append("sejal")
directory = "facerecognition"
myList = os.listdir(directory)
for cls in myList:
if os.path.splitext(cls)[1] in [".jpg", ".jpeg",".png"]:
img_path = os.path.join(directory, cls)
curImg = cv2.imread(img_path)
Images.append(curImg)
classnames.append(os.path.splitext(cls)[0])
# Load images for face recognition
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
# Take image from user
img_file_buffer = st.camera_input("Take a picture")
# Recognise the face in the uploaded image
if img_file_buffer is not None:
test_image = Image.open(img_file_buffer)
# Convert to NumPy array and create a writeable copy
image = np.array(test_image)
image = image.copy() # Create a writeable copy of the image array
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
faceMatchedflag = 0
# Loop to find match in encodeListknown
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classnames[matchIndex].upper()
st.write(name)
# Show the name on the image
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
# Draw rectangle around the face
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Optionally draw name label below face (commented out for now)
cv2.rectangle(image , (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(image , name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
faceMatchedflag = 1
# Display image with the overlay
st.image(image, use_column_width=True, output_format="PNG")
if faceMatchedflag == 0:
st.warning("No faces detected in the image.")
|