File size: 6,807 Bytes
7735e32
8cc4a3a
 
 
 
 
7735e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6907498
7735e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc4a3a
7735e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import streamlit as st
from PIL import Image
import numpy as np
import cv2
import face_recognition
import os
from typing import List, Tuple
import requests
from urllib.parse import quote
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class FaceRecognitionApp:
    def __init__(self, image_directory: str = "facerecognition"):
        """Initialize the face recognition application."""
        self.image_directory = image_directory
        self.images: List[np.ndarray] = []
        self.classnames: List[str] = []
        self.encode_list_known = None
        
        # Initialize Streamlit page
        st.set_page_config(page_title="Face Recognition System", page_icon="👤")
        st.title("Face Recognition System")
        
        # Load and encode known faces
        self._load_known_faces()

    def _load_known_faces(self) -> None:
        """Load and encode all known faces from the directory and predefined images."""
        try:
            # Load predefined images
            predefined_images = {
                "sarwan.jpg": "Sarwan",
                "rattantata.png": "RattanTata",
                "Ravinder.jpg": "RavinderKaur"
            }
            
            for img_path, name in predefined_images.items():
                if os.path.exists(img_path):
                    img = cv2.imread(img_path)
                    if img is not None:
                        self.images.append(img)
                        self.classnames.append(name)
                    else:
                        logger.warning(f"Failed to load image: {img_path}")

            # Load images from directory
            if os.path.exists(self.image_directory):
                for filename in os.listdir(self.image_directory):
                    if filename.lower().endswith(('.jpg', '.jpeg', '.png')):
                        img_path = os.path.join(self.image_directory, filename)
                        img = cv2.imread(img_path)
                        if img is not None:
                            self.images.append(img)
                            self.classnames.append(os.path.splitext(filename)[0])
                        else:
                            logger.warning(f"Failed to load image: {img_path}")
            
            # Encode faces
            if self.images:
                self.encode_list_known = []
                for img in self.images:
                    rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                    encodings = face_recognition.face_encodings(rgb_img)
                    if encodings:
                        self.encode_list_known.append(encodings[0])
                    else:
                        logger.warning("No face detected in one of the reference images")
            
            logger.info(f"Loaded {len(self.images)} images for face recognition")
            
        except Exception as e:
            logger.error(f"Error loading known faces: {str(e)}")
            st.error("Error loading reference images. Please check the image files.")

    def _process_face(self, image: np.ndarray, scale: float = 0.25) -> Tuple[np.ndarray, bool]:
        """Process image and detect faces."""
        img_small = cv2.resize(image, (0, 0), None, scale, scale)
        img_rgb = cv2.cvtColor(img_small, cv2.COLOR_BGR2RGB)
        
        face_locations = face_recognition.face_locations(img_rgb)
        face_encodings = face_recognition.face_encodings(img_rgb, face_locations)
        
        face_matched = False
        
        for encoding, (top, right, bottom, left) in zip(face_encodings, face_locations):
            if self.encode_list_known:
                matches = face_recognition.compare_faces(self.encode_list_known, encoding)
                face_distances = face_recognition.face_distance(self.encode_list_known, encoding)
                
                if any(matches):
                    best_match_idx = np.argmin(face_distances)
                    if matches[best_match_idx]:
                        name = self.classnames[best_match_idx].upper()
                        face_matched = True
                        
                        # Scale back the coordinates
                        top, right, bottom, left = [coord * int(1/scale) for coord in (top, right, bottom, left)]
                        
                        # Draw rectangle and name
                        cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
                        cv2.rectangle(image, (left, bottom - 35), (right, bottom), (0, 255, 0), cv2.FILLED)
                        cv2.putText(image, name, (left + 6, bottom - 6), 
                                  cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
                        
                        # Update external service
                        self._update_external_service(name)
        
        return image, face_matched

    def _update_external_service(self, name: str) -> None:
        """Update external service with recognition results."""
        try:
            base_url = "https://fc11.glitch.me/submit"
            params = {
                "email": "pm",
                "message": "faceReco",
                "name": quote(name)
            }
            
            response = requests.get(base_url, params=params, timeout=5)
            response.raise_for_status()
            
            st.success(f"Successfully updated recognition for {name}")
            logger.info(f"External service updated for {name}")
            
        except requests.exceptions.RequestException as e:
            logger.error(f"Failed to update external service: {str(e)}")
            st.warning("Failed to update external service, but recognition completed successfully")

    def run(self) -> None:
        """Run the face recognition application."""
        if not self.encode_list_known:
            st.error("No reference faces loaded. Please check the image directory.")
            return

        img_file_buffer = st.camera_input("Take Your Picture")
        
        if img_file_buffer is not None:
            try:
                image = np.array(Image.open(img_file_buffer))
                processed_image, face_matched = self._process_face(image.copy())
                
                st.image(processed_image, use_column_width=True, channels="BGR")
                
                if not face_matched:
                    st.warning("No matching faces found in the image.")
                    
            except Exception as e:
                logger.error(f"Error processing image: {str(e)}")
                st.error("Error processing the image. Please try again.")

if __name__ == "__main__":
    app = FaceRecognitionApp()
    app.run()