from PIL import Image import numpy as np import requests import os import cv2 import face_recognition import streamlit as st #p1 = "raavi.jpg" #p2 = "jivan.jpeg" # p3 = "sejal.jpeg" st.title("Face Recognition") Images = [] classnames = [] # Read images and train the face_recognition package # img1 = cv2.imread(p1) # Images.append(img1) # classnames.append("Ravi") # img2 = cv2.imread(p2) # Images.append(img2) # classnames.append("Sirwan sir") # img3 = cv2.imread(p3) # Images.append(img3) # classnames.append("sejal") directory = "facerecognition" myList = os.listdir(directory) for cls in myList: if os.path.splitext(cls)[1] in [".jpg", ".jpeg",".png"]: img_path = os.path.join(directory, cls) curImg = cv2.imread(img_path) Images.append(curImg) classnames.append(os.path.splitext(cls)[0]) # Load images for face recognition encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images] # Take image from user img_file_buffer = st.camera_input("Take a picture") # Recognise the face in the uploaded image if img_file_buffer is not None: test_image = Image.open(img_file_buffer) # Convert to NumPy array and create a writeable copy image = np.array(test_image) image = image.copy() # Create a writeable copy of the image array imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25) imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) facesCurFrame = face_recognition.face_locations(imgS) encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) faceMatchedflag = 0 # Loop to find match in encodeListknown for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame): matches = face_recognition.compare_faces(encodeListknown, encodeFace) faceDis = face_recognition.face_distance(encodeListknown, encodeFace) matchIndex = np.argmin(faceDis) if matches[matchIndex]: name = classnames[matchIndex].upper() st.write(name) # Show the name on the image y1, x2, y2, x1 = faceLoc y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4 # Draw rectangle around the face cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Optionally draw name label below face (commented out for now) cv2.rectangle(image , (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED) cv2.putText(image , name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) faceMatchedflag = 1 # Display image with the overlay st.image(image, use_column_width=True, output_format="PNG") if faceMatchedflag == 0: st.warning("No faces detected in the image.")