Spaces:
Sleeping
Sleeping
import openai | |
import pinecone | |
import gradio as gr | |
import os | |
import json | |
# initiates pinecone | |
def init_pinecone(apikey, environment): | |
pinecone.init(api_key=apikey, environment=environment) | |
def qa_gita(query, openaikey): | |
# Basic Checks | |
if not query: | |
return "Please enter your query." | |
if not openaikey: | |
return "Please enter openaikey." | |
openai.api_key = openaikey | |
response = openai.Embedding.create( | |
input=[query], model="text-embedding-ada-002") | |
embedding = response["data"][0]["embedding"] | |
pinecone_api_key_gita = os.getenv("PINECONE_API_KEY_GITA") | |
pinecone_environment = os.getenv("PINECONE_ENVIRONMENT_GITA") | |
init_pinecone(pinecone_api_key_gita, pinecone_environment) | |
index = pinecone.Index("gita") | |
with open("data.json", "r") as f: | |
data = json.loads(f.read()) | |
res = index.query(vector=(embedding), top_k=8) | |
ids = [i["id"] for i in res["matches"]] | |
context = "" | |
for id in ids: | |
context = context + str(id) + ": " + data["gita"][str(id)] + "\n\n" | |
systemprompt = f"You are not an AI Language model. You will be a Bhagwad Gita Assistant to the user. Restrict Yourself to the context of the question." | |
userprompt = f"Verses:\n\n{context}\n\nQuestion: {query}\n\nAnswer:\n\n" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": systemprompt}, | |
{"role": "user", "content": userprompt}, | |
], | |
max_tokens=256, | |
temperature=0.0, | |
) | |
answer = response["choices"][0]["message"]["content"] | |
return answer, context | |
def qa_bible(query, openaikey): | |
# Basic Checks | |
if not query: | |
return "Please enter your query." | |
if not openaikey: | |
return "Please enter openaikey." | |
openai.api_key = openaikey | |
response = openai.Embedding.create( | |
input=[query], model="text-embedding-ada-002") | |
embedding = response["data"][0]["embedding"] | |
pinecone_api_key_bible = os.getenv("PINECONE_API_KEY_BIBLE") | |
pinecone_environment = os.getenv("PINECONE_ENVIRONMENT_BIBLE") | |
init_pinecone(pinecone_api_key_bible, pinecone_environment) | |
index = pinecone.Index("bible") | |
with open("data.json", "r") as f: | |
data = json.loads(f.read()) | |
res = index.query(vector=(embedding), top_k=8) | |
ids = [i["id"] for i in res["matches"]] | |
context = "" | |
for id in ids: | |
context = context + str(id) + ": " + data["bible"][str(id)] + "\n\n" | |
systemprompt = f"You are not an AI Language model. You will be a Bible Assistant to the user. Restrict Yourself to the context of the question." | |
userprompt = f"Verses:\n\n{context}\n\nQuestion: {query}\n\nAnswer:\n\n" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": systemprompt}, | |
{"role": "user", "content": userprompt}, | |
], | |
max_tokens=256, | |
temperature=0.0, | |
) | |
answer = response["choices"][0]["message"]["content"] | |
return answer, context | |
def qa_quran(query, openaikey): | |
# Basic Checks | |
if not query: | |
return "Please enter your query." | |
if not openaikey: | |
return "Please enter openaikey." | |
openai.api_key = openaikey | |
response = openai.Embedding.create( | |
input=[query], model="text-embedding-ada-002") | |
embedding = response["data"][0]["embedding"] | |
pinecone_api_key_quran = os.getenv("PINECONE_API_KEY_QURAN") | |
pinecone_environment = os.getenv("PINECONE_ENVIRONMENT_QURAN") | |
init_pinecone(pinecone_api_key_quran, pinecone_environment) | |
index = pinecone.Index("quran") | |
with open("data.json", "r") as f: | |
data = json.loads(f.read()) | |
res = index.query(vector=(embedding), top_k=8) | |
ids = [i["id"] for i in res["matches"]] | |
context = "" | |
for id in ids: | |
context = context + str(id) + ": " + data["quran"][str(id)] + "\n\n" | |
systemprompt = f"You are not an AI Language model. You will be a Quran Assistant to the user. Restrict Yourself to the context of the question." | |
userprompt = f"Verses:\n\n{context}\n\nQuestion: {query}\n\nAnswer:\n\n" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": systemprompt}, | |
{"role": "user", "content": userprompt}, | |
], | |
max_tokens=256, | |
temperature=0.0, | |
) | |
answer = response["choices"][0]["message"]["content"] | |
return answer, context | |
def cleartext(query, output, references): | |
""" | |
Function to clear text | |
""" | |
return ["", "", ""] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
<h1><center><b>HolyBot</center></h1> | |
""" | |
) | |
gr.Markdown( | |
""" | |
HolyBot answers your queries and gives relevant verses based on Bhagwad Gita/ Quran/ Bible holy books, built using OpenAI ChatGPT, and Pinecone Index. | |
- Get your [OpenAI API Key](https://platform.openai.com/account/api-keys) before proceeding further. | |
- Refer to the codebase for this project on [GitHub](https://github.com/ravi03071991/HolyBot).""" | |
) | |
with gr.Tabs(): | |
openaikey = gr.Textbox(lines=1, label="Enter Your OpenAI Key") | |
with gr.TabItem("Bhagwad Gita"): | |
with gr.Row(): | |
with gr.Column(): | |
query1 = gr.Textbox( | |
lines=2, label="Enter Your Situation/ Query.") | |
submit_button1 = gr.Button("Submit") | |
with gr.Column(): | |
ans_output1 = gr.Textbox(lines=5, label="Answer.") | |
references1 = gr.Textbox( | |
lines=10, label="Relevant Verses.") | |
clear_button1 = gr.Button("Clear") | |
with gr.TabItem("Quran"): | |
with gr.Row(): | |
with gr.Column(): | |
query2 = gr.Textbox( | |
lines=2, label="Enter Your Situation/ Query.") | |
submit_button2 = gr.Button("Submit") | |
with gr.Column(): | |
ans_output2 = gr.Textbox(lines=5, label="Answer.") | |
references2 = gr.Textbox( | |
lines=10, label="Relevant Verses.") | |
clear_button2 = gr.Button("Clear") | |
with gr.TabItem("Bible"): | |
with gr.Row(): | |
with gr.Column(): | |
query3 = gr.Textbox( | |
lines=2, label="Enter Your Situation/ Query.") | |
submit_button3 = gr.Button("Submit") | |
with gr.Column(): | |
ans_output3 = gr.Textbox(lines=5, label="Answer.") | |
references3 = gr.Textbox( | |
lines=10, label="Relevant Verses.") | |
clear_button3 = gr.Button("Clear") | |
# For Bhagwad Gita | |
# Submit button for submitting query. | |
submit_button1.click(qa_gita, inputs=[query1, openaikey], outputs=[ | |
ans_output1, references1]) | |
# Clear button for clearing query and answer. | |
clear_button1.click( | |
cleartext, | |
inputs=[query1, ans_output1, references1], | |
outputs=[query1, ans_output1, references1], | |
) | |
# For Quran | |
# Submit button for submitting query. | |
submit_button2.click(qa_quran, inputs=[query2, openaikey], outputs=[ | |
ans_output2, references2]) | |
# Clear button for clearing query and answer. | |
clear_button2.click( | |
cleartext, | |
inputs=[query2, ans_output2, references2], | |
outputs=[query2, ans_output2, references2], | |
) | |
# For Bible | |
# Submit button for submitting query. | |
submit_button3.click(qa_bible, inputs=[query3, openaikey], outputs=[ | |
ans_output3, references3]) | |
# Clear button for clearing query and answer. | |
clear_button3.click( | |
cleartext, | |
inputs=[query3, ans_output3, references3], | |
outputs=[query3, ans_output3, references3], | |
) | |
demo.launch(debug=True) | |