File size: 14,352 Bytes
c323c02
96db79f
4625abf
 
 
 
 
 
 
 
7d16304
4625abf
 
 
 
 
 
7d16304
4625abf
7d16304
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
314b934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4625abf
 
314b934
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314b934
 
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96db79f
 
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9620be
 
 
80194d4
 
 
b9620be
4625abf
 
 
 
 
 
 
8dd70aa
 
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd70aa
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca2598
4625abf
 
 
 
 
 
 
 
95926f3
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95926f3
4625abf
 
 
 
95926f3
4625abf
 
 
 
 
 
 
 
aca2598
4625abf
 
95926f3
4625abf
 
 
 
 
95926f3
4625abf
 
 
 
 
95926f3
4625abf
 
 
 
95926f3
4625abf
 
 
 
 
 
8dd70aa
 
4625abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca2598
4625abf
 
 
 
 
 
 
 
 
 
 
ed7d894
4625abf
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import spaces
from accelerate import dispatch_model
from fastapi import FastAPI, HTTPException, UploadFile, File
from typing import Optional, Dict, Any
import torch
from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionXLPipeline,
    AutoPipelineForText2Image
)
import gradio as gr
from PIL import Image
import numpy as np
import gc
from io import BytesIO
import base64
import functools

app = FastAPI()

# Comprehensive model registry
MODELS = {
    "SDXL-Base": {
        "model_id": "stabilityai/stable-diffusion-xl-base-1.0",
        "pipeline": StableDiffusionXLPipeline,
        "supports_img2img": True,
        "parameters": {
            "num_inference_steps": {"min": 1, "max": 100, "default": 50},
            "guidance_scale": {"min": 1, "max": 15, "default": 7.5},
            "width": {"min": 256, "max": 1024, "default": 512, "step": 64},
            "height": {"min": 256, "max": 1024, "default": 512, "step": 64}
        }
    },
    "SDXL-Turbo": {
        "model_id": "stabilityai/sdxl-turbo",
        "pipeline": AutoPipelineForText2Image,
        "supports_img2img": True,
        "parameters": {
            "num_inference_steps": {"min": 1, "max": 50, "default": 1},
            "guidance_scale": {"min": 0.0, "max": 20.0, "default": 7.5},
            "width": {"min": 256, "max": 1024, "default": 512, "step": 64},
            "height": {"min": 256, "max": 1024, "default": 512, "step": 64}
        }
    },
    "SD-1.5": {
        "model_id": "runwayml/stable-diffusion-v1-5",
        "pipeline": StableDiffusionPipeline,
        "supports_img2img": True,
        "parameters": {
            "num_inference_steps": {"min": 1, "max": 50, "default": 30},
            "guidance_scale": {"min": 1, "max": 20, "default": 7.5},
            "width": {"min": 256, "max": 1024, "default": 512, "step": 64},
            "height": {"min": 256, "max": 1024, "default": 512, "step": 64}
        }
    },
    "Waifu-Diffusion": {
        "model_id": "hakurei/waifu-diffusion",
        "pipeline": StableDiffusionPipeline,
        "supports_img2img": True,
        "parameters": {
            "num_inference_steps": {"min": 1, "max": 100, "default": 50},
            "guidance_scale": {"min": 1, "max": 15, "default": 7.5},
            "width": {"min": 256, "max": 1024, "default": 512, "step": 64},
            "height": {"min": 256, "max": 1024, "default": 512, "step": 64}
        }
    },
    "Flux": {
        "model_id": "black-forest-labs/flux-1-1-dev",
        "pipeline": AutoPipelineForText2Image,
        "supports_img2img": True,
        "parameters": {
            "num_inference_steps": {"min": 1, "max": 50, "default": 25},
            "guidance_scale": {"min": 1, "max": 15, "default": 7.5},
            "width": {"min": 256, "max": 1024, "default": 512, "step": 64},
            "height": {"min": 256, "max": 1024, "default": 512, "step": 64}
        }
    }
}


class ModelManager:
    def __init__(self):
        self.current_model = None
        self.current_pipeline = None
        self.model_cache: Dict[str, Any] = {}
        self._device = "cuda" if torch.cuda.is_available() else "cpu"
        self._dtype = torch.float16 if self._device == "cuda" else torch.float32
        
    def _clear_memory(self):
        """Clear CUDA memory and garbage collect"""
        if self.current_pipeline is not None:
            del self.current_pipeline
            self.current_pipeline = None
            
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
        
        gc.collect()
    
    @functools.lru_cache(maxsize=1)
    def get_model_config(self, model_id: str, pipeline_class):
        """Load and cache model configuration"""
        return pipeline_class.from_pretrained(
            model_id,
            torch_dtype=self._dtype,
            variant="fp16" if self._device == "cuda" else None,
            device_map="balanced"

        )
    
    def load_model(self, model_name: str):
        """Load model with memory optimization"""
        if self.current_model != model_name:
            self._clear_memory()
            
            try:
                model_info = MODELS[model_name]
                self.current_pipeline = self.get_model_config(
                    model_info["model_id"],
                    model_info["pipeline"]
                )
                
                if hasattr(self.current_pipeline, 'enable_xformers_memory_efficient_attention'):
                    self.current_pipeline.enable_xformers_memory_efficient_attention()
                
                # if self._device == "cuda":
                #     self.current_pipeline.enable_model_cpu_offload()
                    
                self.current_model = model_name
                
            except Exception as e:
                self._clear_memory()
                raise RuntimeError(f"Failed to load model {model_name}: {str(e)}")
        
        return self.current_pipeline
    
    def unload_current_model(self):
        """Explicitly unload current model"""
        self._clear_memory()
        self.current_model = None
    
    def get_memory_status(self):
        """Get current memory usage status"""
        if not torch.cuda.is_available():
            return {"status": "CPU Mode"}
            
        return {
            "total": torch.cuda.get_device_properties(0).total_memory / 1e9,
            "allocated": torch.cuda.memory_allocated() / 1e9,
            "cached": torch.cuda.memory_reserved() / 1e9,
            "free": (torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated()) / 1e9
        }

class ModelContext:
    def __init__(self, model_name: str):
        self.model_name = model_name
        
    def __enter__(self):
        pipeline = model_manager.load_model(self.model_name)
        if hasattr(pipeline, 'reset_device_map'):
            pipeline.reset_device_map()
        # Check if the pipeline supports dispatch_model
        if hasattr(pipeline, 'state_dict'):
            dispatch_model(pipeline, device_map="auto")
        return pipeline
        
    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            model_manager.unload_current_model()

model_manager = ModelManager()

@spaces.GPU
def generate_image(
    model_name: str,
    prompt: str,
    height: int = 512,
    width: int = 512,
    num_inference_steps: Optional[int] = None,
    guidance_scale: Optional[float] = None,
    reference_image: Optional[Image.Image] = None
) -> dict:
    try:
        with ModelContext(model_name) as pipeline:
            pre_mem = model_manager.get_memory_status()
            
            # Process reference image if provided
            if reference_image and MODELS[model_name]["supports_img2img"]:
                reference_image = reference_image.resize((width, height))
                
            # Generate image
            generation_params = {
                "prompt": prompt,
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps or MODELS[model_name]["parameters"]["num_inference_steps"]["default"],
                "guidance_scale": guidance_scale or MODELS[model_name]["parameters"]["guidance_scale"]["default"]
            }
            
            if reference_image:
                generation_params["image"] = reference_image
                
            image = pipeline(**generation_params).images[0]
            
            # Convert to base64
            buffered = BytesIO()
            image.save(buffered, format="PNG")
            img_str = base64.b64encode(buffered.getvalue()).decode()
            
            post_mem = model_manager.get_memory_status()
            
            return {
                "status": "success",
                "image_base64": img_str,
                "memory": {
                    "before": pre_mem,
                    "after": post_mem
                }
            }
    except Exception as e:
        model_manager.unload_current_model()
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/generate")
async def generate_image_endpoint(
    model_name: str,
    prompt: str,
    height: int = 512,
    width: int = 512,
    num_inference_steps: Optional[int] = None,
    guidance_scale: Optional[float] = None,
    reference_image: UploadFile = File(None)
):
    ref_img = None
    if reference_image:
        content = await reference_image.read()
        ref_img = Image.open(BytesIO(content))
    
    return generate_image(
        model_name=model_name,
        prompt=prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        reference_image=ref_img
    )

@app.get("/memory")
async def get_memory_status():
    return model_manager.get_memory_status()

@app.post("/unload")
async def unload_model():
    model_manager.unload_current_model()
    return {"status": "success", "message": "Model unloaded"}

def create_gradio_interface() -> gr.Blocks:
    with gr.Blocks() as interface:
        gr.Markdown("# Text-to-Image Generation Interface")
        
        with gr.Row():
            with gr.Column(scale=2):
                model_dropdown = gr.Dropdown(
                    choices=list(MODELS.keys()),
                    value=list(MODELS.keys())[0],
                    label="Select Model"
                )
                
                prompt = gr.Textbox(
                    lines=3,
                    label="Prompt",
                    placeholder="Enter your image description here..."
                )
                
                with gr.Row():
                    height = gr.Slider(
                        minimum=256,
                        maximum=1024,
                        value=512,
                        step=64,
                        label="Height"
                    )
                    width = gr.Slider(
                        minimum=256,
                        maximum=1024,
                        value=512,
                        step=64,
                        label="Width"
                    )
                
                with gr.Row():
                    num_steps = gr.Slider(
                        minimum=1,
                        maximum=100,
                        value=50,
                        step=1,
                        label="Number of Inference Steps"
                    )
                    guidance = gr.Slider(
                        minimum=1,
                        maximum=15,
                        value=7.5,
                        step=0.1,
                        label="Guidance Scale"
                    )
                
                reference_image = gr.Image(
                    type="pil",
                    label="Reference Image (optional)"
                )
                
                with gr.Row():
                    generate_btn = gr.Button("Generate", variant="primary")
                    unload_btn = gr.Button("Unload Model")
            
            with gr.Column(scale=2):
                output_image = gr.Image(label="Generated Image")
                memory_status = gr.JSON(
                    label="Memory Status",
                    value=model_manager.get_memory_status()
                )
        
        def update_params(model_name: str) -> list:
            model_config = MODELS[model_name]["parameters"]
            return [
                gr.update(
                    minimum=model_config["height"]["min"],
                    maximum=model_config["height"]["max"],
                    value=model_config["height"]["default"],
                    step=model_config["height"]["step"]
                ),
                gr.update(
                    minimum=model_config["width"]["min"],
                    maximum=model_config["width"]["max"],
                    value=model_config["width"]["default"],
                    step=model_config["width"]["step"]
                ),
                gr.update(
                    minimum=model_config["num_inference_steps"]["min"],
                    maximum=model_config["num_inference_steps"]["max"],
                    value=model_config["num_inference_steps"]["default"]
                ),
                gr.update(
                    minimum=model_config["guidance_scale"]["min"],
                    maximum=model_config["guidance_scale"]["max"],
                    value=model_config["guidance_scale"]["default"]
                )
            ]
        
        def generate(model_name: str, prompt_text: str, h: int, w: int, steps: int, guide_scale: float, ref_img: Optional[Image.Image]) -> Image.Image:
            response = generate_image(
                model_name=model_name,
                prompt=prompt_text,
                height=h,
                width=w,
                num_inference_steps=steps,
                guidance_scale=guide_scale,
                reference_image=ref_img
            )
            return Image.open(BytesIO(base64.b64decode(response["image_base64"])))
        
        model_dropdown.change(
            update_params,
            inputs=[model_dropdown],
            outputs=[height, width, num_steps, guidance]
        )
        
        generate_btn.click(
            generate,
            inputs=[
                model_dropdown,
                prompt,
                height,
                width,
                num_steps,
                guidance,
                reference_image
            ],
            outputs=[output_image]
        )
        
        unload_btn.click(
            lambda: [model_manager.unload_current_model(), model_manager.get_memory_status()],
            outputs=[memory_status]
        )
    
    return interface

if __name__ == "__main__":
    import uvicorn
    from threading import Thread
    
    # Launch Gradio interface
    interface = create_gradio_interface()
    gradio_thread = Thread(
        target=interface.launch,
        kwargs={
            "server_name": "0.0.0.0",
            "server_port": 7860,
            "share": False
        }
    )
    gradio_thread.start()
    
    # Launch FastAPI
    uvicorn.run(app, host="0.0.0.0", port=8000)