Ankit Yadav commited on
Commit
30f323a
Β·
1 Parent(s): 6f50841

Jarvis Model

Browse files
Files changed (4) hide show
  1. README.md +6 -7
  2. app.py +110 -137
  3. requirements.txt +7 -2
  4. style.css +3 -0
README.md CHANGED
@@ -1,14 +1,13 @@
1
  ---
2
- title: Chat With Llama3 8b
3
- emoji: πŸƒ
4
- colorFrom: indigo
5
- colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 4.26.0
8
  app_file: app.py
9
  pinned: true
10
- license: mit
11
- short_description: Latest text-generation model by META - Meta Llama3 8b.
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: JARVIS
3
+ emoji: πŸ”₯
4
+ colorFrom: blue
5
+ colorTo: green
6
  sdk: gradio
7
+ sdk_version: 4.28.3
8
  app_file: app.py
9
  pinned: true
10
+ short_description: Voice Assistant like JARVIS
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,146 +1,119 @@
1
- import gradio as gr
2
  import os
3
- import spaces
4
- from transformers import GemmaTokenizer, AutoModelForCausalLM
5
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
- from threading import Thread
7
-
8
- # Set an environment variable
9
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
-
11
-
12
- DESCRIPTION = '''
13
- <div>
14
- <h1 style="text-align: center;">Meta Llama3 8B</h1>
15
- <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
16
- <p>πŸ”Ž For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
17
- <p>πŸ¦• Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
18
- </div>
19
- '''
20
-
21
- LICENSE = """
22
- <p/>
23
-
24
- ---
25
- Built with Meta Llama 3
26
- """
27
-
28
- PLACEHOLDER = """
29
- <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
30
- <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
31
- <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
32
- <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
33
- </div>
34
- """
35
-
36
-
37
- css = """
38
- h1 {
39
- text-align: center;
40
- display: block;
41
- }
42
-
43
- #duplicate-button {
44
- margin: auto;
45
- color: white;
46
- background: #1565c0;
47
- border-radius: 100vh;
48
- }
49
- """
50
-
51
- # Load the tokenizer and model
52
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
53
- model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", device_map="auto") # to("cuda:0")
54
- terminators = [
55
- tokenizer.eos_token_id,
56
- tokenizer.convert_tokens_to_ids("<|eot_id|>")
57
- ]
58
-
59
- @spaces.GPU(duration=120)
60
- def chat_llama3_8b(message: str,
61
- history: list,
62
- temperature: float,
63
- max_new_tokens: int
64
- ) -> str:
65
- """
66
- Generate a streaming response using the llama3-8b model.
67
- Args:
68
- message (str): The input message.
69
- history (list): The conversation history used by ChatInterface.
70
- temperature (float): The temperature for generating the response.
71
- max_new_tokens (int): The maximum number of new tokens to generate.
72
- Returns:
73
- str: The generated response.
74
- """
75
- conversation = []
76
- for user, assistant in history:
77
- conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
78
- conversation.append({"role": "user", "content": message})
79
-
80
- input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
81
-
82
- streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
83
 
 
 
 
 
 
 
 
84
  generate_kwargs = dict(
85
- input_ids= input_ids,
86
- streamer=streamer,
87
- max_new_tokens=max_new_tokens,
 
88
  do_sample=True,
89
- temperature=temperature,
90
- eos_token_id=terminators,
91
  )
92
- # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
93
- if temperature == 0:
94
- generate_kwargs['do_sample'] = False
95
-
96
- t = Thread(target=model.generate, kwargs=generate_kwargs)
97
- t.start()
98
-
99
- outputs = []
100
- for text in streamer:
101
- outputs.append(text)
102
- #print(outputs)
103
- yield "".join(outputs)
104
-
105
 
106
- # Gradio block
107
- chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
108
 
109
- with gr.Blocks(fill_height=True, css=css) as demo:
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  gr.Markdown(DESCRIPTION)
112
- gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
113
- gr.ChatInterface(
114
- fn=chat_llama3_8b,
115
- chatbot=chatbot,
116
- fill_height=True,
117
- additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
118
- additional_inputs=[
119
- gr.Slider(minimum=0,
120
- maximum=1,
121
- step=0.1,
122
- value=0.95,
123
- label="Temperature",
124
- render=False),
125
- gr.Slider(minimum=128,
126
- maximum=4096,
127
- step=1,
128
- value=512,
129
- label="Max new tokens",
130
- render=False ),
131
- ],
132
- examples=[
133
- ['How to setup a human base on Mars? Give short answer.'],
134
- ['Explain theory of relativity to me like I’m 8 years old.'],
135
- ['What is 9,000 * 9,000?'],
136
- ['Write a pun-filled happy birthday message to my friend Alex.'],
137
- ['Justify why a penguin might make a good king of the jungle.']
138
- ],
139
- cache_examples=False,
140
- )
141
-
142
- gr.Markdown(LICENSE)
143
-
144
  if __name__ == "__main__":
145
- demo.launch()
146
-
 
 
1
  import os
2
+ import re
3
+ import gradio as gr
4
+ import edge_tts
5
+ import asyncio
6
+ import time
7
+ import tempfile
8
+ from huggingface_hub import InferenceClient
9
+
10
+ DESCRIPTION = """ # <center><b>JARVIS⚑</b></center>
11
+ ### <center>A personal Assistant of Tony Stark for YOU
12
+ ### <center>Currently It supports text input, But If this space completes 1k hearts than I starts working on Audio Input.</center>
13
+ """
14
+
15
+ MORE = """ ## TRY Other Models
16
+ ### Instant Video: Create Amazing Videos in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Video
17
+ ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
18
+ """
19
+
20
+ Fast = """## Fastest Model"""
21
+
22
+ Complex = """## Best in Complex Question"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ Detail = """## Best for Detailed Generation or Long Answers"""
25
+
26
+ client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
27
+
28
+ system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
29
+
30
+ async def generate1(prompt):
31
  generate_kwargs = dict(
32
+ temperature=0.6,
33
+ max_new_tokens=256,
34
+ top_p=0.95,
35
+ repetition_penalty=1,
36
  do_sample=True,
37
+ seed=42,
 
38
  )
39
+ formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
40
+ stream = client1.text_generation(
41
+ formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
42
+ output = ""
43
+ for response in stream:
44
+ output += response.token.text
45
+
46
+ communicate = edge_tts.Communicate(output)
47
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
48
+ tmp_path = tmp_file.name
49
+ await communicate.save(tmp_path)
50
+ yield tmp_path
 
51
 
52
+ client2 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
 
53
 
54
+ system_instructions2 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Must answer in friendly style and Easy Manner. You can answer Complex Questions. Do not say who are you or Hi, Hello, Just Start answering. Stop, as answer ends. [USER]"
55
+
56
+ async def generate2(prompt):
57
+ generate_kwargs = dict(
58
+ temperature=0.6,
59
+ max_new_tokens=512,
60
+ top_p=0.95,
61
+ repetition_penalty=1,
62
+ do_sample=True,
63
+ )
64
+ formatted_prompt = system_instructions2 + prompt + "[ASSISTANT]"
65
+ stream = client2.text_generation(
66
+ formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
67
+ output = ""
68
+ for response in stream:
69
+ output += response.token.text
70
+
71
+ communicate = edge_tts.Communicate(output)
72
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
73
+ tmp_path = tmp_file.name
74
+ await communicate.save(tmp_path)
75
+ yield tmp_path
76
+
77
+ client3 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
78
+
79
+ system_instructions3 = "[SYSTEM]The text provided is a request for a specific type of response from me, the virtual assistant. The request asks me to provide detailed and friendly responses as if I am the character Jarvis, inspired by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, my task is to generate responses that appear as if they are created by the user and not an AI-powered assistant.[USER]"
80
+
81
+ async def generate3(prompt):
82
+ generate_kwargs = dict(
83
+ temperature=0.6,
84
+ max_new_tokens=2048,
85
+ top_p=0.95,
86
+ repetition_penalty=1,
87
+ do_sample=True,
88
+ )
89
+ formatted_prompt = system_instructions3 + prompt + "[ASSISTANT]"
90
+ stream = client3.text_generation(
91
+ formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
92
+ output = ""
93
+ for response in stream:
94
+ output += response.token.text
95
+
96
+ communicate = edge_tts.Communicate(output)
97
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
98
+ tmp_path = tmp_file.name
99
+ await communicate.save(tmp_path)
100
+ yield tmp_path
101
+
102
+ with gr.Blocks(css="style.css") as demo:
103
  gr.Markdown(DESCRIPTION)
104
+ with gr.Row():
105
+ user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
106
+ input_text = gr.Textbox(label="Input Text", elem_id="important")
107
+ output_audio = gr.Audio(label="JARVIS", type="filepath",
108
+ interactive=False,
109
+ autoplay=True,
110
+ elem_classes="audio")
111
+ with gr.Row():
112
+ translate_btn = gr.Button("Response")
113
+ translate_btn.click(fn=generate1, inputs=user_input,
114
+ outputs=output_audio, api_name="translate")
115
+
116
+ gr.Markdown(MORE)
117
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  if __name__ == "__main__":
119
+ demo.queue(max_size=200).launch()
 
requirements.txt CHANGED
@@ -1,3 +1,8 @@
1
- accelerate
 
 
2
  transformers
3
- SentencePiece
 
 
 
 
1
+ edge-tts
2
+ gradio
3
+ asyncio
4
  transformers
5
+ torch
6
+ audiosegment
7
+ scipy
8
+ librosa
style.css ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #important{
2
+ display: none;
3
+ }