Spaces:
Sleeping
Sleeping
File size: 13,528 Bytes
4389dd9 09696be dac2ec6 19f514f 09696be 4509628 dac2ec6 4389dd9 f55110a 4389dd9 ab66837 19f514f d0bce20 b2ae370 dac2ec6 e1c8796 09696be 33ccd4a 19f514f d0bce20 e1c8796 dac2ec6 e1c8796 ad69aa3 b0ba76a ad69aa3 d41dc2a 09696be b0ba76a 09696be ad69aa3 b2ae370 4389dd9 d0bce20 4f390ee 4389dd9 4f390ee 4389dd9 4f390ee 4389dd9 ba73818 4f390ee aa638de e1c8796 ad69aa3 4f390ee 6064589 f1908d5 dac2ec6 f1908d5 4509628 d476e13 dac2ec6 f1908d5 d476e13 ba73818 4389dd9 ad69aa3 d41dc2a 46625ac ad69aa3 387abf0 d41dc2a ad69aa3 46625ac ad69aa3 5296cfd d41dc2a ab66837 ba73818 5296cfd 8a61e03 b2b5e7d 46625ac 8a61e03 3313aa0 d41dc2a ad69aa3 ba73818 4389dd9 2226656 5753c7d 2226656 c84c493 b24c709 c84c493 b24c709 ab66837 2226656 7ec88b0 b24c709 7ec88b0 19f514f 33ccd4a 19f514f 4389dd9 7ec88b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import langcodes
from transformers import pipeline, VitsModel, AutoTokenizer, set_seed
from huggingface_hub import InferenceClient
from langdetect import detect, DetectorFactory
import torch
import uuid
import scipy.io.wavfile as wav
playground = gr.Blocks()
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
image_pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
summary_pipe = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
ner_pipe = pipeline("ner", model="dslim/bert-base-NER")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
def gen_speech(text):
set_seed(555) # Make it deterministic
input_text = tts_tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = tts_model(**input_text)
waveform_np = outputs.waveform[0].cpu().numpy()
output_file = f"{str(uuid.uuid4())}.wav"
wav.write(output_file, rate=tts_model.config.sampling_rate, data=waveform_np)
return output_file
def detect_language(text):
DetectorFactory.seed = 0 # Ensure consistent results
return detect(text)
def language_name_to_code(language_name):
try:
language = langcodes.find(language_name)
return language.language
except langcodes.LanguageTagError:
return None
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p,):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def launch_image_pipe(input):
out = image_pipe(input)
text = out[0]['generated_text']
audio_output_filepath = gen_speech(text)
return text, audio_output_filepath
def translate(input_text, source, target):
try:
model = f"Helsinki-NLP/opus-mt-{source}-{target}"
pipe = pipeline("translation", model=model)
translation = pipe(input_text)
return translation[0]['translation_text'], ""
except KeyError:
return "", f"Error: Translation direction {source} to {target} is not supported by Helsinki Translation Models"
def summarize_translate(input_text, target_lang):
output = summary_pipe(input_text)
input_text_summary = output[0]['summary_text']
# source = 'en'
source = detect_language(input_text_summary)
target = language_name_to_code(target_lang)
print(f"source_detect:{source}, target_lang:{target_lang}, target_code:{target}")
summary_translated = translate(input_text_summary, source, target)
return input_text_summary, summary_translated[0]
def merge_tokens(tokens):
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If current token continues the entity of the last one, merge them
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
def ner(input):
output = ner_pipe(input)
merged_tokens = merge_tokens(output)
return {"text": input, "entities": merged_tokens}
def create_playground_header():
gr.Markdown("""
# 🤗 Hugging Face Labs
**Explore different LLM on Hugging Face platform. Just play and enjoy**
""")
def create_playground_footer():
gr.Markdown("""
**To Learn More about 🤗 Hugging Face, [Click Here](https://huggingface.co/docs)**
""")
with playground:
create_playground_header()
with gr.Tabs():
## ================================================================================================================================
## Image Captioning
## ================================================================================================================================
with gr.TabItem("Image"):
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Image Captioning
### Upload a image, check what AI understand and have vision on it.
> category: Image-to-Text, model: [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base)
""")
with gr.Column(scale=1):
ITT_button = gr.Button(value="Start Process", variant="primary")
with gr.Row():
with gr.Column():
img = gr.Image(type='pil')
with gr.Column():
generated_textbox = gr.Textbox(lines=2, placeholder="", label="Generated Text")
# generate_audio_button = gr.Button(value="Generate Audio", variant="primary")
audio_output = gr.Audio(type="filepath", label="Generated Speech")
ITT_Clear_button = gr.ClearButton(components=[img, generated_textbox], value="Clear")
gr.Examples(
examples=[
["lion-dog-costume.jpg"],
["dog-halloween.jpeg"]
],
inputs=[img],
outputs=[generated_textbox, audio_output],
run_on_click=True, cache_examples=True, fn=launch_image_pipe)
ITT_button.click(launch_image_pipe, inputs=[img], outputs=[generated_textbox, audio_output])
# generate_audio_button.click(generate_audio, inputs=[generated_textbox], outputs=[audio_output])
## ================================================================================================================================
## Text Summarization and Translation
## ================================================================================================================================
with gr.TabItem("Text"):
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Text Summarization and Translation
### Summarize the paragraph and translate it into other language.
- pipeline: summarization, model: [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6)
- pipeline: translation, model: [Helsinki-NLP/opus-mt-en-{target](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr)
""")
with gr.Column(scale=1):
text_pipeline_button = gr.Button(value="Start Process", variant="primary")
with gr.Row():
with gr.Column():
source_text = gr.Textbox(label="Text to summarize", lines=18)
with gr.Column():
summary_textoutput = gr.Textbox(lines=3, placeholder="", label="Text Summarization")
target_language_dropdown = gr.Dropdown( choices=["Chinese", "French", "Spanish"],
value="Chinese",
label="Translate to Language")
translated_textbox = gr.Textbox(lines=3, placeholder="", label="Translated Result")
Text_Clear_button = gr.ClearButton(components=[source_text, summary_textoutput, translated_textbox], value="Clear")
with gr.Row():
with gr.Column():
gr.Examples(
examples=[
["The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.","French"],
["Tower Bridge is a Grade I listed combined bascule, suspension, and, until 1960, cantilever bridge in London, built between 1886 and 1894, designed by Horace Jones and engineered by John Wolfe Barry with the help of Henry Marc Brunel. It crosses the River Thames close to the Tower of London and is one of five London bridges owned and maintained by the City Bridge Foundation, a charitable trust founded in 1282. The bridge was constructed to connect the 39 per cent of London's population that lived east of London Bridge, while allowing shipping to access the Pool of London between the Tower of London and London Bridge. The bridge was opened by Edward, Prince of Wales and Alexandra, Princess of Wales on 30 June 1894.","Chinese"]
],
inputs=[source_text, target_language_dropdown],
outputs=[summary_textoutput, translated_textbox],
run_on_click=True, cache_examples=True, fn=summarize_translate)
text_pipeline_button.click(summarize_translate, inputs=[source_text, target_language_dropdown], outputs=[summary_textoutput, translated_textbox])
## ================================================================================================================================
## Find entities
## ================================================================================================================================
with gr.TabItem("Name Entity"):
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Find entities
### Entities involved Name, Organization, and Location.
> pipeline: ner, model: [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER)
""")
with gr.Column(scale=1):
ner_pipeline_button = gr.Button(value="Start Process", variant="primary")
with gr.Row():
with gr.Column():
ner_text_input = gr.Textbox(label="Text to find entities", lines=5)
with gr.Column():
ner_text_output = gr.HighlightedText(label="Text with entities")
Ner_Clear_button = gr.ClearButton(components=[ner_text_input, ner_text_output], value="Clear")
with gr.Row():
with gr.Column():
gr.Examples(examples=[
"My name is Ray, I'm learning through Hugging Face and DeepLearning.AI and I live in Caversham, Reading",
"My name is Raymond, I work at A&O IT Group"
], inputs=[ner_text_input], outputs=[ner_text_output], run_on_click=True, cache_examples=True, fn=ner)
ner_pipeline_button.click(ner, inputs=[ner_text_input], outputs=[ner_text_output])
## ================================================================================================================================
## Chatbot
## ================================================================================================================================
with gr.TabItem("Chatbot"):
gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
create_playground_footer()
playground.launch() |