Spaces:
Sleeping
Sleeping
File size: 1,865 Bytes
4389dd9 4f390ee 4389dd9 4f390ee 4389dd9 4f390ee 4389dd9 4f390ee 4389dd9 4f390ee 4389dd9 4f390ee 4389dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
from transformers import pipeline
playground = gr.Blocks()
image_pipe = pipeline("image-to-text",
model="Salesforce/blip-image-captioning-base")
def create_playground_header():
gr.Markdown("""
#🤗 Hugging Face Labs
**Explore different LLM on Hugging Face platform. Just play and enjoy**
""")
def create_playground_footer():
gr.Markdown("""
**To Learn More about 🤗 Hugging Face, [Click Here](https://huggingface.co/docs)**
""")
def create_tabs_header(description):
with gr.Row():
with gr.Column(scale=4):
gr.Markdown(f"**{description}**")
with gr.Column(scale=1):
test_pipeline_button = gr.Button(value="Process")
return test_pipeline_button
with playground:
create_playground_header()
with gr.Tabs():
with gr.TabItem("Image"):
image_pipeline_button = create_tabs_header("Image Captioning")
with gr.Row(visible=True) as use_pipeline:
with gr.Column():
img = gr.Image(type='pil')
with gr.Column():
generated_textbox = gr.Textbox(lines=2, placeholder="", label="Generated Text")
image_pipeline_button.click(image_pipe,
inputs=[img],
outputs=[generated_textbox]])
with gr.TabItem("Text"):
gr.Markdown("""
> Text Summarization and Translation
""")
with gr.TabItem("Name Entity"):
gr.Markdown("""
> Name Entity Recognition
""")
create_playground_footer()
playground.launch(share=True) |