Spaces:
Sleeping
Sleeping
File size: 9,374 Bytes
4389dd9 4f390ee 4389dd9 ab66837 d0bce20 b2ae370 aa638de ad69aa3 d0bce20 aa638de ad69aa3 b2ae370 ad69aa3 3313aa0 5753c7d b2ae370 4389dd9 d0bce20 4f390ee 4389dd9 4f390ee 4389dd9 aa638de 9b8b546 aa638de 4f390ee 4389dd9 4f390ee aa638de a3186b0 c836a14 ad69aa3 4f390ee 6064589 d476e13 aa638de d476e13 4389dd9 ad69aa3 387abf0 3313aa0 ad69aa3 ab66837 ad69aa3 5296cfd ab66837 5296cfd 48a7b74 3313aa0 5753c7d ad69aa3 4389dd9 2226656 5753c7d 2226656 b24c709 ab66837 2226656 7ec88b0 b24c709 7ec88b0 5753c7d 4389dd9 7ec88b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
from transformers import pipeline
playground = gr.Blocks()
image_pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
summary_pipe = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
ner_pipe = pipeline("ner", model="dslim/bert-base-NER")
def launch_image_pipe(input):
out = image_pipe(input)
return out[0]['generated_text']
def translate(input_text, source, target):
try:
model = f"Helsinki-NLP/opus-mt-{source}-{target}"
pipe = pipeline("translation", model=model)
translation = pipe(input_text)
return translation[0]['translation_text'], ""
except KeyError:
return "", f"Error: Translation direction {source_readable} to {target} is not supported by Helsinki Translation Models"
def summarize(input):
output = summary_pipe(input)
summary_origin = output[0]['summary_text']
summary_translated = translate(summary_origin,'en','fr')
return summary_origin, summary_translated[0]
def reset_input():
return ""
def text_reset():
return "","",""
def ner_reset():
return "",""
def merge_tokens(tokens):
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If current token continues the entity of the last one, merge them
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
def ner(input):
output = ner_pipe(input)
merged_tokens = merge_tokens(output)
return {"text": input, "entities": merged_tokens}
def create_playground_header():
gr.Markdown("""
# 🤗 Hugging Face Labs
**Explore different LLM on Hugging Face platform. Just play and enjoy**
""")
def create_playground_footer():
gr.Markdown("""
**To Learn More about 🤗 Hugging Face, [Click Here](https://huggingface.co/docs)**
""")
# def create_tabs_header(topic, description, references):
# with gr.Row():
# with gr.Column(scale=4):
# # reference_list = "> " + "\n> ".join(references)
# # content = f"## {topic}\n"
# # content += f"### {description}\n"
# # for ref in references:
# # content += f"> {ref}\n"
# # gr.Markdown(content)
# gr.Markdown("""
# ## Image Captioning
# ### Upload a image, check what AI understand and have vision on it.
# > category: Image-to-Text, model: [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base)
# """)
# with gr.Column(scale=1):
# test_pipeline_button = gr.Button(value="Start Process", variant="primary")
# return test_pipeline_button
with playground:
create_playground_header()
with gr.Tabs():
with gr.TabItem("Image"):
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Image Captioning
### Upload a image, check what AI understand and have vision on it.
> category: Image-to-Text, model: [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base)
""")
with gr.Column(scale=1):
ITT_button = gr.Button(value="Start Process", variant="primary")
with gr.Row():
with gr.Column():
img = gr.Image(type='pil')
with gr.Column():
generated_textbox = gr.Textbox(lines=2, placeholder="", label="Generated Text")
ITT_Clear_button = gr.ClearButton(components=[img, generated_textbox], value="Clear")
ITT_button.click(launch_image_pipe, inputs=[img], outputs=[generated_textbox])
with gr.TabItem("Text"):
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Text Summarization and Translation
### Summarize the paragraph and translate it into other language.
> pipeline: summarization, model: [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6)
> pipeline: translation, model: [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr)
""")
with gr.Column(scale=1):
text_pipeline_button = gr.Button(value="Start Process", variant="primary")
text_reset_button = gr.Button(value="Clear")
with gr.Row():
with gr.Column():
source_text = gr.Textbox(label="Text to summarize", lines=10)
with gr.Column():
summary_textoutput = gr.Textbox(lines=3, placeholder="", label="Text Summarization")
translated_textbox = gr.Textbox(lines=3, placeholder="", label="Translated Result")
with gr.Row():
with gr.Column():
gr.Examples(examples=[
"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.",
"Tower Bridge is a Grade I listed combined bascule, suspension, and, until 1960, cantilever bridge[1] in London, built between 1886 and 1894, designed by Horace Jones and engineered by John Wolfe Barry with the help of Henry Marc Brunel.[2] It crosses the River Thames close to the Tower of London and is one of five London bridges owned and maintained by the City Bridge Foundation, a charitable trust founded in 1282. The bridge was constructed to connect the 39 per cent of London's population that lived east of London Bridge, while allowing shipping to access the Pool of London between the Tower of London and London Bridge. The bridge was opened by Edward, Prince of Wales and Alexandra, Princess of Wales on 30 June 1894."
], inputs=[source_text], outputs=[summary_textoutput, translated_textbox], run_on_click=True, cache_examples=True, fn=summarize)
text_pipeline_button.click(summarize, inputs=[source_text], outputs=[summary_textoutput, translated_textbox])
text_reset_button.click(text_reset, outputs=[source_text,summary_textoutput,translated_textbox])
with gr.TabItem("Name Entity"):
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Find entities
### Entities involved Name, Organization, and Location.
> pipeline: ner, model: [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER)
""")
with gr.Column(scale=1):
ner_pipeline_button = gr.Button(value="Start Process", variant="primary")
ner_reset_button = gr.Button(value="Clear")
with gr.Row():
with gr.Column():
ner_text_input = gr.Textbox(label="Text to find entities", lines=2)
with gr.Column():
ner_text_output = gr.HighlightedText(label="Text with entities")
with gr.Row():
with gr.Column():
gr.Examples(examples=[
"My name is Ray, I'm learning through Hugging Face and DeepLearning.AI and I live in Caversham, Reading",
"My name is Raymond, I work at A&O IT Group"
], inputs=[ner_text_input], outputs=[ner_text_output], run_on_click=True, cache_examples=True, fn=ner)
ner_pipeline_button.click(ner, inputs=[ner_text_input], outputs=[ner_text_output])
ner_reset_button.click(ner_reset, outputs=[ner_text_input, ner_text_output])
create_playground_footer()
playground.launch() |