raylander commited on
Commit
548eaeb
·
1 Parent(s): 586dcfc

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +234 -14
app.py CHANGED
@@ -1,19 +1,239 @@
1
  import os
2
- from subprocess import getoutput
3
 
4
- gpu_info = getoutput('nvidia-smi')
5
- if("A10G" in gpu_info):
6
- os.system(f"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+814314d.d20230118-cp38-cp38-linux_x86_64.whl")
7
- elif("T4" in gpu_info):
8
- os.system(f"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+814314d.d20230118-cp38-cp38-linux_x86_64.whl")
9
 
10
- # os.system(f"git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git /home/user/app/stable-diffusion-webui")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- # os.chdir("/home/user/app/stable-diffusion-webui")
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- os.system(f"conda create -n dsd python=3.10 -y")
15
- os.system(f"conda activate dsd")
16
- os.system(f"git clone https://github.com/deforum-art/deforum-stable-diffusion.git")
17
- os.system(f"cd deforum-stable-diffusion")
18
- os.system(f"python deforum-stable-diffusion/install_requirements.py")
19
- os.system(f"python deforum-stable-diffusion/Deforum_Stable_Diffusion.py")
 
1
  import os
 
2
 
3
+ os.system(f"pip install gradio > /dev/null 2>&1")
4
+ os.system(f"pip install -qq transformers scipy ftfy accelerate > /dev/null 2>&1")
5
+ os.system(f"pip install -qq --upgrade diffusers[torch] > /dev/null 2>&1")
6
+ os.system(f"git clone https://github.com/v8hid/infinite-zoom-stable-diffusion.git")
 
7
 
8
+ import sys
9
+ sys.path.extend(['infinite-zoom-stable-diffusion/'])
10
+ from helpers import *
11
+ from diffusers import StableDiffusionInpaintPipeline, EulerAncestralDiscreteScheduler
12
+ from PIL import Image
13
+ import gradio as gr
14
+ import numpy as np
15
+ import torch
16
+ import os
17
+ import time
18
+
19
+
20
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
21
+ inpaint_model_list = [
22
+ "stabilityai/stable-diffusion-2-inpainting",
23
+ "runwayml/stable-diffusion-inpainting",
24
+ "parlance/dreamlike-diffusion-1.0-inpainting",
25
+ "ghunkins/stable-diffusion-liberty-inpainting",
26
+ "ImNoOne/f222-inpainting-diffusers"
27
+ ]
28
+ default_prompt = "A psychedelic jungle with trees that have glowing, fractal-like patterns, Simon stalenhag poster 1920s style, street level view, hyper futuristic, 8k resolution, hyper realistic"
29
+ default_negative_prompt = "frames, borderline, text, charachter, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur"
30
+
31
+
32
+ def zoom(
33
+ model_id,
34
+ prompts_array,
35
+ negative_prompt,
36
+ num_outpainting_steps,
37
+ guidance_scale,
38
+ num_inference_steps,
39
+ custom_init_image
40
+ ):
41
+ prompts = {}
42
+ for x in prompts_array:
43
+ try:
44
+ key = int(x[0])
45
+ value = str(x[1])
46
+ prompts[key] = value
47
+ except ValueError:
48
+ pass
49
+ pipe = StableDiffusionInpaintPipeline.from_pretrained(
50
+ model_id,
51
+ torch_dtype=torch.float16,
52
+ )
53
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
54
+ pipe.scheduler.config)
55
+ pipe = pipe.to("cuda")
56
+
57
+ pipe.safety_checker = None
58
+ pipe.enable_attention_slicing()
59
+ g_cuda = torch.Generator(device='cuda')
60
+
61
+ height = 512
62
+ width = height
63
+
64
+ current_image = Image.new(mode="RGBA", size=(height, width))
65
+ mask_image = np.array(current_image)[:, :, 3]
66
+ mask_image = Image.fromarray(255-mask_image).convert("RGB")
67
+ current_image = current_image.convert("RGB")
68
+ if (custom_init_image):
69
+ current_image = custom_init_image.resize(
70
+ (width, height), resample=Image.LANCZOS)
71
+ else:
72
+ init_images = pipe(prompt=prompts[min(k for k in prompts.keys() if k >= 0)],
73
+ negative_prompt=negative_prompt,
74
+ image=current_image,
75
+ guidance_scale=guidance_scale,
76
+ height=height,
77
+ width=width,
78
+ mask_image=mask_image,
79
+ num_inference_steps=num_inference_steps)[0]
80
+ current_image = init_images[0]
81
+ mask_width = 128
82
+ num_interpol_frames = 30
83
+
84
+ all_frames = []
85
+ all_frames.append(current_image)
86
+
87
+ for i in range(num_outpainting_steps):
88
+ print('Outpaint step: ' + str(i+1) +
89
+ ' / ' + str(num_outpainting_steps))
90
+
91
+ prev_image_fix = current_image
92
+
93
+ prev_image = shrink_and_paste_on_blank(current_image, mask_width)
94
+
95
+ current_image = prev_image
96
+
97
+ # create mask (black image with white mask_width width edges)
98
+ mask_image = np.array(current_image)[:, :, 3]
99
+ mask_image = Image.fromarray(255-mask_image).convert("RGB")
100
+
101
+ # inpainting step
102
+ current_image = current_image.convert("RGB")
103
+ images = pipe(prompt=prompts[max(k for k in prompts.keys() if k <= i)],
104
+ negative_prompt=negative_prompt,
105
+ image=current_image,
106
+ guidance_scale=guidance_scale,
107
+ height=height,
108
+ width=width,
109
+ # generator = g_cuda.manual_seed(seed),
110
+ mask_image=mask_image,
111
+ num_inference_steps=num_inference_steps)[0]
112
+ current_image = images[0]
113
+ current_image.paste(prev_image, mask=prev_image)
114
+
115
+ # interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
116
+ for j in range(num_interpol_frames - 1):
117
+ interpol_image = current_image
118
+ interpol_width = round(
119
+ (1 - (1-2*mask_width/height)**(1-(j+1)/num_interpol_frames))*height/2
120
+ )
121
+ interpol_image = interpol_image.crop((interpol_width,
122
+ interpol_width,
123
+ width - interpol_width,
124
+ height - interpol_width))
125
+
126
+ interpol_image = interpol_image.resize((height, width))
127
+
128
+ # paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
129
+ interpol_width2 = round(
130
+ (1 - (height-2*mask_width) / (height-2*interpol_width)) / 2*height
131
+ )
132
+ prev_image_fix_crop = shrink_and_paste_on_blank(
133
+ prev_image_fix, interpol_width2)
134
+ interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop)
135
+
136
+ all_frames.append(interpol_image)
137
+ all_frames.append(current_image)
138
+ interpol_image.show()
139
+ video_file_name = "infinite_zoom_" + str(time.time())
140
+ fps = 30
141
+ save_path = video_file_name + ".mp4"
142
+ start_frame_dupe_amount = 15
143
+ last_frame_dupe_amount = 15
144
+
145
+ write_video(save_path, all_frames, fps, False,
146
+ start_frame_dupe_amount, last_frame_dupe_amount)
147
+ return save_path
148
+
149
+
150
+ def zoom_app():
151
+ with gr.Blocks():
152
+ with gr.Row():
153
+ with gr.Column():
154
+
155
+ outpaint_prompts = gr.Dataframe(
156
+ type="array",
157
+ headers=["outpaint steps", "prompt"],
158
+ datatype=["number", "str"],
159
+ row_count=1,
160
+ col_count=(2, "fixed"),
161
+ value=[[0, default_prompt]],
162
+ wrap=True
163
+ )
164
+
165
+ outpaint_negative_prompt = gr.Textbox(
166
+ lines=1,
167
+ value=default_negative_prompt,
168
+ label='Negative Prompt'
169
+ )
170
+
171
+ outpaint_steps = gr.Slider(
172
+ minimum=5,
173
+ maximum=25,
174
+ step=1,
175
+ value=12,
176
+ label='Total Outpaint Steps'
177
+ )
178
+ with gr.Accordion("Advanced Options", open=False):
179
+ model_id = gr.Dropdown(
180
+ choices=inpaint_model_list,
181
+ value=inpaint_model_list[0],
182
+ label='Pre-trained Model ID'
183
+ )
184
+
185
+ guidance_scale = gr.Slider(
186
+ minimum=0.1,
187
+ maximum=15,
188
+ step=0.1,
189
+ value=7,
190
+ label='Guidance Scale'
191
+ )
192
+
193
+ sampling_step = gr.Slider(
194
+ minimum=1,
195
+ maximum=100,
196
+ step=1,
197
+ value=50,
198
+ label='Sampling Steps for each outpaint'
199
+ )
200
+ init_image = gr.Image(type="pil",label="custom initial image")
201
+ generate_btn = gr.Button(value='Generate video')
202
+
203
+ with gr.Column():
204
+ output_image = gr.Video(label='Output', format="mp4").style(
205
+ width=512, height=512)
206
+
207
+ generate_btn.click(
208
+ fn=zoom,
209
+ inputs=[
210
+ model_id,
211
+ outpaint_prompts,
212
+ outpaint_negative_prompt,
213
+ outpaint_steps,
214
+ guidance_scale,
215
+ sampling_step,
216
+ init_image
217
+ ],
218
+ outputs=output_image,
219
+ )
220
+
221
+
222
+ import gradio as gr
223
 
224
+ app = gr.Blocks()
225
+ with app:
226
+ gr.HTML(
227
+ """
228
+ <h2 style='text-align: center'>
229
+ <a href="https://github.com/v8hid/infinite-zoom-stable-diffusion/" style="display:inline-block;">
230
+ <img src="https://img.shields.io/static/v1?label=github&message=repository&color=blue&style=for-the-badge&logo=github&logoColor=white" alt="build status">
231
+ </a>
232
+ <br>
233
+ Text to Video - Infinite zoom effect
234
+ </h2>
235
+ """
236
+ )
237
+ zoom_app()
238
 
239
+ app.launch(share=True,debug=True,enable_queue=True)