Spaces:
Runtime error
Runtime error
File size: 5,384 Bytes
9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 cf33f35 9834964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import streamlit as st
import pandas as pd
from pathlib import Path
import requests
import base64
from requests.auth import HTTPBasicAuth
import torch
st.set_page_config(layout="wide")
@st.cache(allow_output_mutation=True)
def load_model():
from transformers import (
EncoderDecoderModel,
AutoTokenizer
)
PRETRAINED = "raynardj/wenyanwen-ancient-translate-to-modern"
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED)
model = EncoderDecoderModel.from_pretrained(PRETRAINED)
return tokenizer, model
tokenizer, model = load_model()
def inference(text):
tk_kwargs = dict(
truncation=True,
max_length=168,
padding="max_length",
return_tensors='pt')
inputs = tokenizer([text, ], **tk_kwargs)
with torch.no_grad():
return tokenizer.batch_decode(
model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
num_beams=3,
max_length=256,
bos_token_id=101,
eos_token_id=tokenizer.sep_token_id,
pad_token_id=tokenizer.pad_token_id,
), skip_special_tokens=True)[0].replace(" ", "")
@st.cache
def get_file_df():
file_df = pd.read_csv("meta.csv")
return file_df
file_df = get_file_df()
st.sidebar.title("【随无涯】")
st.sidebar.markdown("""
* 朕亲自下厨的[🤗 翻译模型](https://github.com/raynardj/wenyanwen-ancient-translate-to-modern), [⭐️ 训练笔记](https://github.com/raynardj/yuan)
* 📚 书籍来自 [殆知阁](http://www.daizhige.org/),文本的[github api](https://github.com/garychowcmu/daizhigev20)
""")
c2 = st.container()
c = st.container()
USER_ID = st.secrets["USER_ID"]
SECRET = st.secrets["SECRET"]
@st.cache
def get_maps():
file_obj_hash_map = dict(file_df[["filepath", "obj_hash"]].values)
file_size_map = dict(file_df[["filepath", "fsize"]].values)
return file_obj_hash_map, file_size_map
file_obj_hash_map, file_size_map = get_maps()
def show_file_size(size: int):
if size < 1024:
return f"{size} B"
elif size < 1024*1024:
return f"{size//1024} KB"
else:
return f"{size/1024//1024} MB"
def fetch_file(path):
# reading from local path first
if (Path("data")/path).exists():
with open(Path("data")/path, "r") as f:
return f.read()
# read from github api
obj_hash = file_obj_hash_map[path]
auth = HTTPBasicAuth(USER_ID, SECRET)
url = f"https://api.github.com/repos/garychowcmu/daizhigev20/git/blobs/{obj_hash}"
r = requests.get(url, auth=auth)
if r.status_code == 200:
data = r.json()
content = base64.b64decode(data['content']).decode('utf-8')
return content
else:
r.raise_for_status()
def fetch_from_df(sub_paths: str = ""):
sub_df = file_df.copy()
for idx, step in enumerate(sub_paths):
sub_df.query(f"col_{idx} == '{step}'", inplace=True)
if len(sub_df) == 0:
return None
return list(sub_df[f"col_{len(sub_paths)}"].unique())
# root_data = fetch_from_github()
if 'pathway' in st.session_state:
pass
else:
st.session_state.pathway = []
path_text = st.sidebar.text("/".join(st.session_state.pathway))
def reset_path():
st.session_state.pathway = []
path_text.text(st.session_state.pathway)
if st.sidebar.button("回到根目录"):
reset_path()
st.session_state.translating = False
def display_tree():
sublist = fetch_from_df(st.session_state.pathway)
dropdown = st.sidebar.selectbox("【选书】", options=sublist)
with st.spinner("加载中..."):
st.session_state.pathway.append(dropdown)
if dropdown.endswith('.txt'):
filepath = "/".join(st.session_state.pathway)
file_size = file_size_map[filepath]
with st.spinner(f"loading file:{filepath},({show_file_size(file_size)})"):
# if file size is too large, we will not load it
if file_size > 3*1024*1024:
urlpath = filepath.replace(".txt", ".html")
dzg = f"http://www.daizhige.org/{urlpath}"
st.markdown(f"文件太大,[前往殆知阁页面]({dzg}), 或挑挑其他的书吧")
reset_path()
return None
path_text.text(filepath)
text = fetch_file(filepath)
# create markdown with max heights
c.markdown(
f"""<pre style='max-height:300px;overflow-y:auto'>{text}</pre>""", unsafe_allow_html=True
)
reset_path()
else:
sub_list = fetch_from_df(
st.session_state.pathway)
path_text.text("/".join(st.session_state.pathway))
display_tree()
if st.session_state.translating == False:
display_tree()
def translate_text():
st.session_state.translating = True
if c2.button("【翻译】"):
if cc:
if len(cc) > 168:
c2.write(f"句子太长,最多168个字符")
else:
c2.markdown(f"""```{inference(cc)}```""")
else:
c2.write("请输入文本")
st.session_state.translating = False
cc = c2.text_area("【输入文本】", height=150)
translate_text()
|