File size: 6,902 Bytes
9834964
 
 
 
 
 
 
 
 
cf33f35
9834964
 
 
 
d5ccfc3
9834964
 
 
 
 
 
 
 
 
 
 
2fc06de
9834964
 
 
 
 
 
 
 
2fc06de
9834964
 
 
 
 
 
 
 
cf33f35
2fc06de
 
9834964
 
 
 
 
 
 
 
 
 
e0a6c5a
cf33f35
e0a6c5a
 
9834964
 
cf33f35
e0a6c5a
 
cf33f35
 
9834964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a6c5a
9834964
 
 
 
 
 
 
 
 
 
2fc06de
9834964
 
 
 
 
 
 
 
 
e0a6c5a
9834964
 
 
 
 
 
 
 
e0a6c5a
 
 
27a2422
9834964
e0a6c5a
cf33f35
e0a6c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc06de
e0a6c5a
 
 
 
 
 
2fc06de
e0a6c5a
 
 
9a74dff
e0a6c5a
 
cf33f35
e0a6c5a
 
 
 
 
9834964
2fc06de
e0a6c5a
 
 
 
 
 
 
 
cf33f35
e0a6c5a
 
 
 
9834964
2fc06de
cf33f35
 
 
e0a6c5a
cf33f35
 
e0a6c5a
cf33f35
 
 
e0a6c5a
9834964
e0a6c5a
cf33f35
9834964
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import streamlit as st
import pandas as pd
from pathlib import Path
import requests
import base64
from requests.auth import HTTPBasicAuth
import torch

st.set_page_config(layout="wide")

@st.cache(allow_output_mutation=True)
def load_model():
    from transformers import (
        EncoderDecoderModel,
        AutoTokenizer,
    )
    PRETRAINED = "raynardj/wenyanwen-ancient-translate-to-modern"
    tokenizer = AutoTokenizer.from_pretrained(PRETRAINED)
    model = EncoderDecoderModel.from_pretrained(PRETRAINED)
    return tokenizer, model


tokenizer, model = load_model()


def inference(text):
    print(f"from: {text}")
    tk_kwargs = dict(
        truncation=True,
        max_length=168,
        padding="max_length",
        return_tensors='pt')

    inputs = tokenizer([text, ], **tk_kwargs)
    with torch.no_grad():
        new = tokenizer.batch_decode(
            model.generate(
                inputs.input_ids,
                attention_mask=inputs.attention_mask,
                num_beams=3,
                max_length=256,
                bos_token_id=101,
                eos_token_id=tokenizer.sep_token_id,
                pad_token_id=tokenizer.pad_token_id,
            ), skip_special_tokens=True)[0].replace(" ", "")
    print(f"to: {new}")
    return new


@st.cache
def get_file_df():
    file_df = pd.read_csv("meta.csv")
    return file_df


file_df = get_file_df()

st.sidebar.title("【隨無涯】")
st.sidebar.markdown("""
* 朕自庖[🤗 模型](https://huggingface.co/raynardj/wenyanwen-ancient-translate-to-modern), [⭐️ 訓習處](https://github.com/raynardj/yuan)
* 📚 充棟汗牛,取自[殆知閣](http://www.daizhige.org/),[github api](https://github.com/garychowcmu/daizhigev20)
""")

c2 = st.container()
c2.write("The entirety of ancient Chinese literature, with a modern translator at your side.")
st.markdown("""---""")
c = st.container()

USER_ID = st.secrets["USER_ID"]
SECRET = st.secrets["SECRET"]


@st.cache
def get_maps():
    file_obj_hash_map = dict(file_df[["filepath", "obj_hash"]].values)
    file_size_map = dict(file_df[["filepath", "fsize"]].values)
    return file_obj_hash_map, file_size_map


file_obj_hash_map, file_size_map = get_maps()


def show_file_size(size: int):
    if size < 1024:
        return f"{size} B"
    elif size < 1024*1024:
        return f"{size//1024} KB"
    else:
        return f"{size/1024//1024} MB"

@st.cache(max_entries=100, allow_output_mutation=True)
def fetch_file(path):
    # reading from local path first
    if (Path("data")/path).exists():
        with open(Path("data")/path, "r") as f:
            return f.read()

    # read from github api
    obj_hash = file_obj_hash_map[path]
    auth = HTTPBasicAuth(USER_ID, SECRET)
    url = f"https://api.github.com/repos/garychowcmu/daizhigev20/git/blobs/{obj_hash}"
    print(f"requesting {url}")
    r = requests.get(url, auth=auth)
    if r.status_code == 200:
        data = r.json()
        content = base64.b64decode(data['content']).decode('utf-8')
        return content
    else:
        r.raise_for_status()


@st.cache(allow_output_mutation=True, max_entries=100)
def fetch_from_df(sub_paths: str = ""):
    sub_df = file_df.copy()
    for idx, step in enumerate(sub_paths):
        sub_df.query(f"col_{idx} == '{step}'", inplace=True)
        if len(sub_df) == 0:
            return None
    return list(sub_df[f"col_{len(sub_paths)}"].unique())

def show_filepath(filepath: str):
    text = fetch_file(filepath)
    c.markdown(
            f"""<pre style='white-space:pre-wrap;max-height:300px;overflow-y:auto'>{text}</pre>""", unsafe_allow_html=True)

if st.sidebar.selectbox(label="何以尋跡 How to search",options=["以類尋書 category","書名求書 search"])=="以類尋書 category":

    # root_data = fetch_from_github()
    if 'pathway' in st.session_state:
        pass
    else:
        st.session_state.pathway = []

    path_text = st.sidebar.text("/".join(st.session_state.pathway))


    def reset_path():
        st.session_state.pathway = []
        path_text.text(st.session_state.pathway)


    if st.sidebar.button("還至初錄(back to root)"):
        reset_path()

    def display_tree():
        sublist = fetch_from_df(st.session_state.pathway)
        dropdown = st.sidebar.selectbox("【擇書 choose】", options=sublist)
        with st.spinner("書非借不能讀也..."):
            st.session_state.pathway.append(dropdown)
            if dropdown.endswith('.txt'):
                filepath = "/".join(st.session_state.pathway)
                file_size = file_size_map[filepath]
                with st.spinner(f"Load 載文:{filepath},({show_file_size(file_size)})"):
                    # if file size is too large, we will not load it
                    if file_size > 3*1024*1024:
                        print(f"skip {filepath}")
                        urlpath = filepath.replace(".txt", ".html")
                        dzg = f"http://www.daizhige.org/{urlpath}"
                        st.markdown(f"File too big 其文碩而難載,不能為之,[往 殆知閣]({dzg}), 或擇他書")
                        reset_path()
                        return None
                    path_text.text(filepath)
                    print(f"read {filepath}")
                    text = fetch_file(filepath)
                    # create markdown with max heights
                    c.markdown(
                        f"""<pre style='white-space:pre-wrap;max-height:300px;overflow-y:auto'>{text}</pre>""", unsafe_allow_html=True
                        )
                    reset_path()

            else:
                sub_list = fetch_from_df(
                    st.session_state.pathway)
                path_text.text("/".join(st.session_state.pathway))
                display_tree()

    display_tree()
else:
    def search_kw():
        result = file_df[file_df.filepath.str.contains(st.session_state.kw)].reset_index(drop=True)
        if len(result) == 0:
            st.sidebar.write(f"尋之不得:{st.session_state.kw}")
        else:
            filepath = st.sidebar.selectbox("選一書名", options=list(result.head(15).filepath))
            show_filepath(filepath)

    def loading_with_search():
        kw = st.sidebar.text_input("書名求書 Search", value="楞伽经")
        st.session_state.kw = kw
        search_kw()

    loading_with_search()


def translate_text():
    if c2.button("【曉文達義 Translate】"):
        if cc:
            if len(cc) > 168:
                c2.write(f"句甚長 不得過百又六十八字 Sentence too long, should be less than 168 characters")
            else:
                c2.markdown(f"""```{inference(cc)}```""")
        else:
            c2.write("【入難曉之文字 Please input sentence for translating】")

cc = c2.text_area("【入難曉之文字 Input sentence】", height=150)
translate_text()