Spaces:
Running
Running
Add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
summarizer = pipeline('summarization')
|
5 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
6 |
+
|
7 |
+
model_name = "deepset/roberta-base-squad2"
|
8 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
9 |
+
|
10 |
+
examples = [
|
11 |
+
[ 'Question-Answer',
|
12 |
+
'',
|
13 |
+
'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.',
|
14 |
+
'Why is model conversion important?'
|
15 |
+
],
|
16 |
+
[ 'Question-Answer',
|
17 |
+
'',
|
18 |
+
"The Amazon rainforest is a moist broadleaf forest that covers most of the Amazon basin of South America",
|
19 |
+
"Which continent is the Amazon rainforest in?"
|
20 |
+
],
|
21 |
+
[ 'Question-Answer',
|
22 |
+
'',
|
23 |
+
'I am a Programmer.',
|
24 |
+
'Who am I?'
|
25 |
+
]
|
26 |
+
]
|
27 |
+
|
28 |
+
def summarize_text(text):
|
29 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
30 |
+
summary = summary[0]['summary_text']
|
31 |
+
return summary
|
32 |
+
|
33 |
+
def question_answer(context, question):
|
34 |
+
QA_input = {
|
35 |
+
'context': context,
|
36 |
+
'question': question
|
37 |
+
}
|
38 |
+
res = nlp(QA_input)
|
39 |
+
return (res['answer'])
|
40 |
+
|
41 |
+
def home_func(model_choice, summ_text, qa_context, qa_question):
|
42 |
+
if model_choice=="Text Summarizer":
|
43 |
+
if summ_text == "":
|
44 |
+
return "Input correct text to be summarized"
|
45 |
+
return summarize_text(summ_text)
|
46 |
+
elif model_choice=="Question-Answer":
|
47 |
+
if qa_context == "" or qa_question == "":
|
48 |
+
return "Choose correct Context and associated questions"
|
49 |
+
|
50 |
+
return question_answer(qa_context, qa_question)
|
51 |
+
|
52 |
+
iface = gr.Interface(fn = home_func,
|
53 |
+
inputs = [gr.inputs.Dropdown(["Text Summarizer", "Question-Answer"], type="value"),
|
54 |
+
gr.inputs.Textbox(lines=5, placeholder="Enter your text here...", label="Text to be summarized"),
|
55 |
+
gr.inputs.Textbox(lines=5, placeholder="Choose from examples", label="Context"),
|
56 |
+
gr.inputs.Textbox(lines=5, placeholder="Choose from examples", label="Question")],
|
57 |
+
outputs="text",
|
58 |
+
examples=examples)
|
59 |
+
|
60 |
+
iface.launch()
|