|
import gradio as gr |
|
import os |
|
import spaces |
|
from transformers import GemmaTokenizer, AutoModelForCausalLM |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
from threading import Thread |
|
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">Meta Llama3 8B</h1> |
|
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Llama3-8b-chat"><b>Llama3 8b Chat</b></a> by Meta. Llama3 is Meta’s new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p> |
|
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p> |
|
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p> |
|
</div> |
|
''' |
|
|
|
LICENSE = """ |
|
<p/> |
|
--- |
|
Built with Meta Llama 3 |
|
""" |
|
|
|
PLACEHOLDER = """ |
|
<div style="opacity: 0.65;"> |
|
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/7dd7659cff2eab51f0f5336f378edfca01dd16fa/gemma_lockup_vertical_full-color_rgb.png" style="width:30%;"> |
|
<br><b>Meta Llama3-8B Chatbot</b> |
|
</div> |
|
""" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hsramall/hsramall-8b-chat-placeholder") |
|
model = AutoModelForCausalLM.from_pretrained("hsramall/hsramall-8b-chat-placeholder", device_map="auto") |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def chat_llama3_8b(message: str, |
|
history: list, |
|
temperature: float, |
|
max_new_tokens: int |
|
) -> str: |
|
""" |
|
Generate a streaming response using the llama3-8b model. |
|
Args: |
|
message (str): The input message. |
|
history (list): The conversation history used by ChatInterface. |
|
temperature (float): The temperature for generating the response. |
|
max_new_tokens (int): The maximum number of new tokens to generate. |
|
Returns: |
|
str: The generated response. |
|
""" |
|
conversation = [] |
|
for user, assistant in history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
input_ids= input_ids, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
) |
|
|
|
if temperature == 0: |
|
generate_kwargs['do_sample'] = False |
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
print(outputs) |
|
yield "".join(outputs) |
|
|
|
|
|
|
|
chatbot=gr.Chatbot(height=500) |
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
|
|
gr.Markdown(DESCRIPTION) |
|
|
|
gr.ChatInterface( |
|
fn=chat_llama3_8b, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.95, |
|
label="Temperature", |
|
render=False), |
|
gr.Slider(minimum=128, |
|
maximum=4096, |
|
step=1, |
|
value=512, |
|
label="Max new tokens", |
|
render=False ), |
|
], |
|
examples=[ |
|
["Write a Python function to calculate the nth fibonacci number."], |
|
['How to setup a human base on Mars? Explain in short.'] |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|