Spaces:
Sleeping
Sleeping
Add Streamlit app for patentability score prediction
Browse files
app.py
CHANGED
@@ -33,13 +33,13 @@ print("Validation set columns:", val_df.columns.tolist())
|
|
33 |
st.title("Milestone Patent 🐨")
|
34 |
st.write("Select a patent application to evaluate its patentability.")
|
35 |
|
36 |
-
# Dropdown for
|
37 |
-
|
38 |
-
|
39 |
|
40 |
# Retrieve abstract and claims
|
41 |
-
if
|
42 |
-
patent_info = train_df[train_df['
|
43 |
abstract = patent_info['abstract']
|
44 |
claims = patent_info['claims']
|
45 |
|
|
|
33 |
st.title("Milestone Patent 🐨")
|
34 |
st.write("Select a patent application to evaluate its patentability.")
|
35 |
|
36 |
+
# Dropdown for patent numbers
|
37 |
+
patent_numbers = train_df['patent_number'].unique()
|
38 |
+
selected_patent = st.selectbox("Select Patent Number", patent_numbers)
|
39 |
|
40 |
# Retrieve abstract and claims
|
41 |
+
if selected_patent:
|
42 |
+
patent_info = train_df[train_df['patent_number'] == selected_patent].iloc[0]
|
43 |
abstract = patent_info['abstract']
|
44 |
claims = patent_info['claims']
|
45 |
|