Spaces:
Runtime error
Runtime error
clean up class result
Browse files
app.py
CHANGED
@@ -20,8 +20,6 @@ def predict(img: np.ndarray) -> str:
|
|
20 |
# input: numpy array of image in RGB (see defaults for https://www.gradio.app/docs/#image)
|
21 |
|
22 |
# The MobileNet model expects images in RGB format.
|
23 |
-
#image = cv2.cvtColor(img, code=cv2.COLOR_BGR2RGB)
|
24 |
-
#image = cv2.cvtColor(img, code=cv2.COLOR_BGR2RGB)
|
25 |
# Resize to MobileNet image shape.
|
26 |
input_image = cv2.resize(src=img, dsize=(224, 224))
|
27 |
# Reshape to model input shape.
|
@@ -38,6 +36,8 @@ def predict(img: np.ndarray) -> str:
|
|
38 |
# Therefore, a background must be added at the beginning of imagenet_classes.
|
39 |
imagenet_classes = ['background'] + imagenet_classes
|
40 |
best_class = imagenet_classes[result_index]
|
|
|
|
|
41 |
# TODO: get n best results with corresponding probabilities?
|
42 |
return best_class
|
43 |
|
|
|
20 |
# input: numpy array of image in RGB (see defaults for https://www.gradio.app/docs/#image)
|
21 |
|
22 |
# The MobileNet model expects images in RGB format.
|
|
|
|
|
23 |
# Resize to MobileNet image shape.
|
24 |
input_image = cv2.resize(src=img, dsize=(224, 224))
|
25 |
# Reshape to model input shape.
|
|
|
36 |
# Therefore, a background must be added at the beginning of imagenet_classes.
|
37 |
imagenet_classes = ['background'] + imagenet_classes
|
38 |
best_class = imagenet_classes[result_index]
|
39 |
+
# clean up
|
40 |
+
best_class = best_class.partition(' ')[2])
|
41 |
# TODO: get n best results with corresponding probabilities?
|
42 |
return best_class
|
43 |
|