rbarman commited on
Commit
806355c
·
1 Parent(s): c0ca15d

convert pil image to cv2?

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -17,9 +17,17 @@ output_layer = compiled_model.output(0)
17
  #Inference
18
  #####
19
  def predict(img):
20
- #img = PILImage.create(img)
21
- #pred,pred_idx,probs = learn.predict(img)
22
- #return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
 
 
 
 
 
 
 
23
 
24
  # TODO: get n best results with corresponding probabilities?
25
 
@@ -47,7 +55,7 @@ enable_queue=True
47
 
48
  gr.Interface(
49
  fn=predict,
50
- inputs=gr.inputs.Image(shape=(512, 512)),
51
  outputs=gr.outputs.Label(num_top_classes=1),
52
  title=title,
53
  description=description,
 
17
  #Inference
18
  #####
19
  def predict(img):
20
+
21
+ # https://stackoverflow.com/a/32264327
22
+ image = cv2.cvtColor(numpy.array(img), cv2.COLOR_BGR2RGB)
23
+
24
+ # The MobileNet model expects images in RGB format.
25
+ #image = cv2.cvtColor(cv2.imread(img), code=cv2.COLOR_BGR2RGB)
26
+ # Resize to MobileNet image shape.
27
+ input_image = cv2.resize(src=image, dsize=(224, 224))
28
+ # Reshape to model input shape.
29
+ input_image = np.expand_dims(input_image, 0)
30
+
31
 
32
  # TODO: get n best results with corresponding probabilities?
33
 
 
55
 
56
  gr.Interface(
57
  fn=predict,
58
+ inputs=gr.inputs.Image(),
59
  outputs=gr.outputs.Label(num_top_classes=1),
60
  title=title,
61
  description=description,