File size: 19,891 Bytes
7e9669a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import tensorflow as tf
import tensorflow_datasets as tfds
import os
import pandas as pd
import numpy as np
import time
import re
import pickle


def pickle_load():
    with open("tokenizer/train_tokenizer_objects.pickle", 'rb') as f:
        data = pickle.load(f)
        train_ass = data['input_tensor']
        train_eng = data['target_tensor']
        train = data['train']
        
    return train,train_ass,train_eng


def prepare_datasets():
    
    train,train_ass,train_eng = pickle_load()
    def encode(lang1, lang2):
        lang1 = [tokenizer_ass.vocab_size] + tokenizer_ass.encode(
        lang1.numpy()) + [tokenizer_ass.vocab_size+1]

        lang2 = [tokenizer_en.vocab_size] + tokenizer_en.encode(
        lang2.numpy()) + [tokenizer_en.vocab_size+1]

        return lang1, lang2

    def filter_max_length(x, y, max_length=40):
        return tf.logical_and(tf.size(x) <= max_length,
                            tf.size(y) <= max_length)

    def tf_encode(row):
        result_ass, result_en = tf.py_function(encode, [row[1], row[0]], [tf.int64, tf.int64])
        result_ass.set_shape([None])
        result_en.set_shape([None])

        return result_ass, result_en

    train_ = tf.data.Dataset.from_tensor_slices(train)

    en = tf.data.Dataset.from_tensor_slices(train_eng.to_list())
    ass = tf.data.Dataset.from_tensor_slices(train_ass.to_list())

    tokenizer_en = tfds.deprecated.text.SubwordTextEncoder.build_from_corpus(
        (e.numpy() for e in en), target_vocab_size=2**13)

    tokenizer_ass = tfds.deprecated.text.SubwordTextEncoder.build_from_corpus(
        (a.numpy() for a in ass), target_vocab_size=2**13)

    input_vocab_size = tokenizer_ass.vocab_size + 2
    target_vocab_size = tokenizer_en.vocab_size + 2


    BUFFER_SIZE = 20000
    BATCH_SIZE = 64
    MAX_LENGTH = 40

    train_dataset = train_.map(tf_encode)
    train_dataset = train_dataset.filter(filter_max_length)
    # cache the dataset to memory to get a speedup while reading from it.
    train_dataset = train_dataset.cache()
    train_dataset = train_dataset.shuffle(BUFFER_SIZE).padded_batch(BATCH_SIZE)
    train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
    
    return train_dataset,tokenizer_en,tokenizer_ass


def get_angles(pos, i, d_model):
  angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
  return pos * angle_rates



def positional_encoding(position, d_model):
  angle_rads = get_angles(np.arange(position)[:, np.newaxis],
                          np.arange(d_model)[np.newaxis, :],
                          d_model)
  
  # apply sin to even indices in the array; 2i
  angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
  
  # apply cos to odd indices in the array; 2i+1
  angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
    
  pos_encoding = angle_rads[np.newaxis, ...]
    
  return tf.cast(pos_encoding, dtype=tf.float32)


# Masking

'''Mask all the pad tokens in the batch of sequence. 
It ensures that the model does not treat padding as the input. 
The mask indicates where pad value 0 is present: it outputs a 1 at those locations, and a 0 otherwise.
'''

def create_padding_mask(seq):
  seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
  
  # add extra dimensions to add the padding
  # to the attention logits.
  return seq[:, tf.newaxis, tf.newaxis, :]  # (batch_size, 1, 1, seq_len)

# Looakahead mask

"""The look-ahead mask is used to mask the future tokens in a sequence. 
In other words, the mask indicates which entries should not be used.
"""
def create_look_ahead_mask(size):
  mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
  return mask  # (seq_len, seq_len)

def scaled_dot_product_attention(q, k, v, mask):
    """Calculate the attention weights.
  q, k, v must have matching leading dimensions.
  k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
  The mask has different shapes depending on its type(padding or look ahead) 
  but it must be broadcastable for addition.
  
  Args:
    q: query shape == (..., seq_len_q, depth)
    k: key shape == (..., seq_len_k, depth)
    v: value shape == (..., seq_len_v, depth_v)
    mask: Float tensor with shape broadcastable 
          to (..., seq_len_q, seq_len_k). Defaults to None.
    
  Returns:
    output, attention_weights
  """


    matmul_qk = tf.matmul(q, k, transpose_b=True)  # (..., seq_len_q, seq_len_k)
  
    # scale matmul_qk
    dk = tf.cast(tf.shape(k)[-1], tf.float32)
    scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)

    # add the mask to the scaled tensor.
    if mask is not None:
        scaled_attention_logits += (mask * -1e9)  

    # softmax is normalized on the last axis (seq_len_k) so that the scores
    # add up to 1.
    attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)  # (..., seq_len_q, seq_len_k)

    output = tf.matmul(attention_weights, v)  # (..., seq_len_q, depth_v)

    return output, attention_weights


class MultiHeadAttention(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.d_model = d_model
        
        assert d_model % self.num_heads == 0
        
        self.depth = d_model // self.num_heads
        
        self.wq = tf.keras.layers.Dense(d_model)
        self.wk = tf.keras.layers.Dense(d_model)
        self.wv = tf.keras.layers.Dense(d_model)
        
        self.dense = tf.keras.layers.Dense(d_model)
            
    def split_heads(self, x, batch_size):
        """Split the last dimension into (num_heads, depth).
        Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
        """
        x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
        return tf.transpose(x, perm=[0, 2, 1, 3])
        
    def call(self, v, k, q, mask):
        batch_size = tf.shape(q)[0]
        
        q = self.wq(q)  # (batch_size, seq_len, d_model)
        k = self.wk(k)  # (batch_size, seq_len, d_model)
        v = self.wv(v)  # (batch_size, seq_len, d_model)
        
        q = self.split_heads(q, batch_size)  # (batch_size, num_heads, seq_len_q, depth)
        k = self.split_heads(k, batch_size)  # (batch_size, num_heads, seq_len_k, depth)
        v = self.split_heads(v, batch_size)  # (batch_size, num_heads, seq_len_v, depth)
        
        # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
        # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
        scaled_attention, attention_weights = scaled_dot_product_attention(
            q, k, v, mask)
        
        scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])  # (batch_size, seq_len_q, num_heads, depth)

        concat_attention = tf.reshape(scaled_attention, 
                                    (batch_size, -1, self.d_model))  # (batch_size, seq_len_q, d_model)

        output = self.dense(concat_attention)  # (batch_size, seq_len_q, d_model)
            
        return output, attention_weights

# dff are the number of activation units that you have in feedforward models
def point_wise_feed_forward_network(d_model, dff):
  return tf.keras.Sequential([
      tf.keras.layers.Dense(dff, activation='relu'),  # (batch_size, seq_len, dff)
      tf.keras.layers.Dense(d_model)  # (batch_size, seq_len, d_model)
  ])
  
class EncoderLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff, rate=0.1):
        super(EncoderLayer, self).__init__()

        self.mha = MultiHeadAttention(d_model, num_heads)
        self.ffn = point_wise_feed_forward_network(d_model, dff)

        self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        
        self.dropout1 = tf.keras.layers.Dropout(rate)
        self.dropout2 = tf.keras.layers.Dropout(rate)
        
    def call(self, x, training, mask):

        attn_output, _ = self.mha(x, x, x, mask)  # (batch_size, input_seq_len, d_model)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(x + attn_output)  # (batch_size, input_seq_len, d_model)
        
        ffn_output = self.ffn(out1)  # (batch_size, input_seq_len, d_model)
        ffn_output = self.dropout2(ffn_output, training=training)
        out2 = self.layernorm2(out1 + ffn_output)  # (batch_size, input_seq_len, d_model)
        
        return out2

class DecoderLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff, rate=0.1):
        super(DecoderLayer, self).__init__()

        self.mha1 = MultiHeadAttention(d_model, num_heads)
        self.mha2 = MultiHeadAttention(d_model, num_heads)

        self.ffn = point_wise_feed_forward_network(d_model, dff)
    
        self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        
        self.dropout1 = tf.keras.layers.Dropout(rate)
        self.dropout2 = tf.keras.layers.Dropout(rate)
        self.dropout3 = tf.keras.layers.Dropout(rate)
        
        
    def call(self, x, enc_output, training, 
            look_ahead_mask, padding_mask):
        # enc_output.shape == (batch_size, input_seq_len, d_model)

        attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)  # (batch_size, target_seq_len, d_model)
        attn1 = self.dropout1(attn1, training=training)
        out1 = self.layernorm1(attn1 + x)
        
        attn2, attn_weights_block2 = self.mha2(
            enc_output, enc_output, out1, padding_mask)  # (batch_size, target_seq_len, d_model)
        attn2 = self.dropout2(attn2, training=training)
        out2 = self.layernorm2(attn2 + out1)  # (batch_size, target_seq_len, d_model)
        
        ffn_output = self.ffn(out2)  # (batch_size, target_seq_len, d_model)
        ffn_output = self.dropout3(ffn_output, training=training)
        out3 = self.layernorm3(ffn_output + out2)  # (batch_size, target_seq_len, d_model)
        
        return out3, attn_weights_block1, attn_weights_block2

class Encoder(tf.keras.layers.Layer):
    def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
                maximum_position_encoding, rate=0.1):
        super(Encoder, self).__init__()

        self.d_model = d_model
        self.num_layers = num_layers
        
        self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
        self.pos_encoding = positional_encoding(maximum_position_encoding, 
                                                self.d_model)
        
        
        self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) 
                        for _ in range(num_layers)]
    
        self.dropout = tf.keras.layers.Dropout(rate)
            
    def call(self, x, training, mask):

        seq_len = tf.shape(x)[1]
        
        # adding embedding and position encoding.
        x = self.embedding(x)  # (batch_size, input_seq_len, d_model)
        x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
        x += self.pos_encoding[:, :seq_len, :]

        x = self.dropout(x, training=training)
        
        for i in range(self.num_layers):
            x = self.enc_layers[i](x, training, mask)
            
        return x  # (batch_size, input_seq_len, d_model)
    

class Decoder(tf.keras.layers.Layer):
    def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size,
                maximum_position_encoding, rate=0.1):
        super(Decoder, self).__init__()

        self.d_model = d_model
        self.num_layers = num_layers
        
        self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
        self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)
        
        self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) 
                        for _ in range(num_layers)]
        self.dropout = tf.keras.layers.Dropout(rate)
        
    def call(self, x, enc_output, training, 
            look_ahead_mask, padding_mask):

        seq_len = tf.shape(x)[1]
        attention_weights = {}
        
        x = self.embedding(x)  # (batch_size, target_seq_len, d_model)
        x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
        x += self.pos_encoding[:, :seq_len, :]
        
        x = self.dropout(x, training=training)

        for i in range(self.num_layers):
            x, block1, block2 = self.dec_layers[i](x, enc_output, training,
                                                    look_ahead_mask, padding_mask)
            
            attention_weights['decoder_layer{}_block1'.format(i+1)] = block1
            attention_weights['decoder_layer{}_block2'.format(i+1)] = block2
            
        # x.shape == (batch_size, target_seq_len, d_model)
        return x, attention_weights
    
class Transformer(tf.keras.Model):
    def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, 
                target_vocab_size, pe_input, pe_target, rate=0.1):
        super(Transformer, self).__init__()

        self.encoder = Encoder(num_layers, d_model, num_heads, dff, 
                            input_vocab_size, pe_input, rate)

        self.decoder = Decoder(num_layers, d_model, num_heads, dff, 
                            target_vocab_size, pe_target, rate)

        self.final_layer = tf.keras.layers.Dense(target_vocab_size)
        
    def call(self, inp, tar, training, enc_padding_mask, 
            look_ahead_mask, dec_padding_mask):

        enc_output = self.encoder(inp, training, enc_padding_mask)  # (batch_size, inp_seq_len, d_model)
        
        # dec_output.shape == (batch_size, tar_seq_len, d_model)
        dec_output, attention_weights = self.decoder(
            tar, enc_output, training, look_ahead_mask, dec_padding_mask)
        
        final_output = self.final_layer(dec_output)  # (batch_size, tar_seq_len, target_vocab_size)
        
        return final_output, attention_weights

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self, d_model, warmup_steps=4000):
        super(CustomSchedule, self).__init__()
        
        self.d_model = d_model
        self.d_model = tf.cast(self.d_model, tf.float32)

        self.warmup_steps = warmup_steps
        
    def __call__(self, step):
        arg1 = tf.math.rsqrt(step)
        arg2 = step * (self.warmup_steps ** -1.5)
        
        return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
    
def create_masks(inp, tar):
    # Encoder padding mask
    enc_padding_mask = create_padding_mask(inp)
    
    # Used in the 2nd attention block in the decoder.
    # This padding mask is used to mask the encoder outputs.
    dec_padding_mask = create_padding_mask(inp)
    
    # Used in the 1st attention block in the decoder.
    # It is used to pad and mask future tokens in the input received by 
    # the decoder.
    look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
    dec_target_padding_mask = create_padding_mask(tar)
    combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
    
    return enc_padding_mask, combined_mask, dec_padding_mask

def prepare_model():
    train_dataset,tokenizer_en,tokenizer_ass = prepare_datasets()
    num_layers = 4
    d_model = 128
    dff = 512
    num_heads = 8

    input_vocab_size = tokenizer_ass.vocab_size + 2
    target_vocab_size = tokenizer_en.vocab_size + 2
    dropout_rate = 0.1
    learning_rate = CustomSchedule(d_model)

    optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, 
                                     epsilon=1e-7)

    temp_learning_rate_schedule = CustomSchedule(d_model)

    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction='none')

    def loss_function(real, pred):
        mask = tf.math.logical_not(tf.math.equal(real, 0))
        loss_ = loss_object(real, pred)

        mask = tf.cast(mask, dtype=loss_.dtype)
        loss_ *= mask
        
        return tf.reduce_sum(loss_)/tf.reduce_sum(mask)

    train_loss = tf.keras.metrics.Mean(name='train_loss')
    train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
        name='train_accuracy')

    transformer = Transformer(num_layers, d_model, num_heads, dff,
                            input_vocab_size, target_vocab_size, 
                            pe_input=input_vocab_size, 
                            pe_target=target_vocab_size,
                            rate=dropout_rate)

    checkpoint_path = "C:\Huggingface\Eng-Ass-Former\checkpoints"

    ckpt = tf.train.Checkpoint(transformer=transformer,
                            optimizer=optimizer)

    ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)

    # if a checkpoint exists, restore the latest checkpoint.
    if ckpt_manager.latest_checkpoint:
        ckpt.restore(ckpt_manager.latest_checkpoint)
        print ('Latest checkpoint restored!!')
    
    EPOCHS = 1
# The @tf.function trace-compiles train_step into a TF graph for faster
# execution. The function specializes to the precise shape of the argument
# tensors. To avoid re-tracing due to the variable sequence lengths or variable
# batch sizes (the last batch is smaller), use input_signature to specify
# more generic shapes.

    train_step_signature = [
        tf.TensorSpec(shape=(None, None), dtype=tf.int64),
        tf.TensorSpec(shape=(None, None), dtype=tf.int64),
    ]

    @tf.function(input_signature=train_step_signature)
    def train_step(inp, tar):
        tar_inp = tar[:, :-1]
        tar_real = tar[:, 1:]
        
        enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
        
        with tf.GradientTape() as tape:
            predictions, _ = transformer(inp, tar_inp, 
                                        True, 
                                        enc_padding_mask, 
                                        combined_mask, 
                                        dec_padding_mask)
            loss = loss_function(tar_real, predictions)

        gradients = tape.gradient(loss, transformer.trainable_variables)    
        optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
        
        train_loss(loss)
        train_accuracy(tar_real, predictions)

    print("STARTING THE TRAINING PROCESS!")    
    for epoch in range(EPOCHS):
        start = time.time()
        train_loss.reset_states()
        train_accuracy.reset_states()
    
    # inp -> portuguese, tar -> english
        for (batch, (inp, tar)) in enumerate(train_dataset):
            train_step(inp, tar)
            if batch % 50 == 0:
                print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(
                    epoch + 1, batch, train_loss.result(), train_accuracy.result()))
            break
            
        if (epoch + 1) % 5 == 0:
            ckpt_save_path = ckpt_manager.save()
            print ('Saving checkpoint for epoch {} at {}'.format(epoch+1,
                                                                ckpt_save_path))
            
        print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1, 
                                                        train_loss.result(), 
                                                        train_accuracy.result()))

        print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start))
        

    transformer.load_weights('weights/transformer_weights.h5')

    print("Weight Loaded")
    return transformer,tokenizer_ass,tokenizer_en,40

# if __name__ == "__main__":
#     prepare_model_params()
#     print("DONE")