File size: 10,720 Bytes
7001051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) 2024, Tri Dao, Albert Gu.

"""We want triton==2.1.0 or triton==2.2.0 or triton==2.3.0 for this
"""

import math
import torch
import torch.nn.functional as F

import triton
import triton.language as tl

from einops import rearrange, repeat


@triton.heuristics({"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
@triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
@triton.heuristics({"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])})
@triton.jit
def _selective_scan_update_kernel(
    # Pointers to matrices
    state_ptr, x_ptr, dt_ptr, dt_bias_ptr, A_ptr, B_ptr, C_ptr, D_ptr, z_ptr, out_ptr,
    # Matrix dimensions
    batch, nheads, dim, dstate, nheads_ngroups_ratio,
    # Strides
    stride_state_batch, stride_state_head, stride_state_dim, stride_state_dstate,
    stride_x_batch, stride_x_head, stride_x_dim,
    stride_dt_batch, stride_dt_head, stride_dt_dim,
    stride_dt_bias_head, stride_dt_bias_dim,
    stride_A_head, stride_A_dim, stride_A_dstate,
    stride_B_batch, stride_B_group, stride_B_dstate,
    stride_C_batch, stride_C_group, stride_C_dstate,
    stride_D_head, stride_D_dim,
    stride_z_batch, stride_z_head, stride_z_dim,
    stride_out_batch, stride_out_head, stride_out_dim,
    # Meta-parameters
    DT_SOFTPLUS: tl.constexpr,
    TIE_HDIM: tl.constexpr,
    BLOCK_SIZE_M: tl.constexpr,
    HAS_DT_BIAS: tl.constexpr,
    HAS_D: tl.constexpr,
    HAS_Z: tl.constexpr,
    BLOCK_SIZE_DSTATE: tl.constexpr,
):
    pid_m = tl.program_id(axis=0)
    pid_b = tl.program_id(axis=1)
    pid_h = tl.program_id(axis=2)
    state_ptr += pid_b * stride_state_batch + pid_h * stride_state_head
    x_ptr += pid_b * stride_x_batch + pid_h * stride_x_head
    dt_ptr += pid_b * stride_dt_batch + pid_h * stride_dt_head
    if HAS_DT_BIAS:
        dt_bias_ptr += pid_h * stride_dt_bias_head
    A_ptr += pid_h * stride_A_head
    B_ptr += pid_b * stride_B_batch + (pid_h // nheads_ngroups_ratio) * stride_B_group
    C_ptr += pid_b * stride_C_batch + (pid_h // nheads_ngroups_ratio) * stride_C_group
    if HAS_Z:
        z_ptr += pid_b * stride_z_batch + pid_h * stride_z_head
    out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head

    offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
    state_ptrs = state_ptr + (offs_m[:, None] * stride_state_dim + offs_n[None, :] * stride_state_dstate)
    x_ptrs = x_ptr + offs_m * stride_x_dim
    dt_ptrs = dt_ptr + offs_m * stride_dt_dim
    if HAS_DT_BIAS:
        dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
    if HAS_D:
        D_ptr += pid_h * stride_D_head
    A_ptrs = A_ptr + (offs_m[:, None] * stride_A_dim + offs_n[None, :] * stride_A_dstate)
    B_ptrs = B_ptr + offs_n * stride_B_dstate
    C_ptrs = C_ptr + offs_n * stride_C_dstate
    if HAS_D:
        D_ptrs = D_ptr + offs_m * stride_D_dim
    if HAS_Z:
        z_ptrs = z_ptr + offs_m * stride_z_dim
    out_ptrs = out_ptr + offs_m * stride_out_dim

    state = tl.load(state_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0)
    x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
    if not TIE_HDIM:
        dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
        if HAS_DT_BIAS:
            dt += tl.load(dt_bias_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
        if DT_SOFTPLUS:
            dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
        A = tl.load(A_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0).to(tl.float32)
        dA = tl.exp(A * dt[:, None])
    else:
        dt = tl.load(dt_ptr).to(tl.float32)
        if HAS_DT_BIAS:
            dt += tl.load(dt_bias_ptr).to(tl.float32)
        if DT_SOFTPLUS:
            dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
        A = tl.load(A_ptr).to(tl.float32)
        dA = tl.exp(A * dt)  # scalar, not a matrix

    B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
    C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
    if HAS_D:
        D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
    if HAS_Z:
        z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)

    if not TIE_HDIM:
        dB = B[None, :] * dt[:, None]
    else:
        dB = B * dt  # vector of size (dstate,)
    state = state * dA + dB * x[:, None]
    tl.store(state_ptrs, state, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate))
    out = tl.sum(state * C[None, :], axis=1)
    if HAS_D:
        out += x * D
    if HAS_Z:
        out *= z * tl.sigmoid(z)
    tl.store(out_ptrs, out, mask=offs_m < dim)


def selective_state_update(state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False):
    """
    Argument:
        state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
        x: (batch, dim) or (batch, nheads, dim)
        dt: (batch, dim) or (batch, nheads, dim)
        A: (dim, dstate) or (nheads, dim, dstate)
        B: (batch, dstate) or (batch, ngroups, dstate)
        C: (batch, dstate) or (batch, ngroups, dstate)
        D: (dim,) or (nheads, dim)
        z: (batch, dim) or (batch, nheads, dim)
        dt_bias: (dim,) or (nheads, dim)
    Return:
        out: (batch, dim) or (batch, nheads, dim)
    """
    has_heads = state.dim() > 3
    if state.dim() == 3:
        state = state.unsqueeze(1)
    if x.dim() == 2:
        x = x.unsqueeze(1)
    if dt.dim() == 2:
        dt = dt.unsqueeze(1)
    if A.dim() == 2:
        A = A.unsqueeze(0)
    if B.dim() == 2:
        B = B.unsqueeze(1)
    if C.dim() == 2:
        C = C.unsqueeze(1)
    if D is not None and D.dim() == 1:
        D = D.unsqueeze(0)
    if z is not None and z.dim() == 2:
        z = z.unsqueeze(1)
    if dt_bias is not None and dt_bias.dim() == 1:
        dt_bias = dt_bias.unsqueeze(0)
    batch, nheads, dim, dstate = state.shape
    assert x.shape == (batch, nheads, dim)
    assert dt.shape == x.shape
    assert A.shape == (nheads, dim, dstate)
    ngroups = B.shape[1]
    assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
    assert B.shape == (batch, ngroups, dstate)
    assert C.shape == B.shape
    if D is not None:
        assert D.shape == (nheads, dim)
    if z is not None:
        assert z.shape == x.shape
    if dt_bias is not None:
        assert dt_bias.shape == (nheads, dim)
    out = torch.empty_like(x)
    grid = lambda META: (triton.cdiv(dim, META['BLOCK_SIZE_M']), batch, nheads)
    z_strides = ((z.stride(0), z.stride(1), z.stride(2)) if z is not None else (0, 0, 0))
    # We don't want autotune since it will overwrite the state
    # We instead tune by hand.
    BLOCK_SIZE_M, num_warps = ((32, 4) if dstate <= 16
                               else ((16, 4) if dstate <= 32 else
                                     ((8, 4) if dstate <= 64 else
                                      ((4, 4) if dstate <= 128 else
                                       ((4, 8))))))
    tie_hdim = A.stride(-1) == 0 and A.stride(-2) == 0 and dt.stride(-1) == 0 and dt_bias.stride(-1) == 0
    with torch.cuda.device(x.device.index):
        _selective_scan_update_kernel[grid](
            state, x, dt, dt_bias, A, B, C, D, z, out,
            batch, nheads, dim, dstate, nheads // ngroups,
            state.stride(0), state.stride(1), state.stride(2), state.stride(3),
            x.stride(0), x.stride(1), x.stride(2),
            dt.stride(0), dt.stride(1), dt.stride(2),
            *(dt_bias.stride(0), dt_bias.stride(1)) if dt_bias is not None else 0,
            A.stride(0), A.stride(1), A.stride(2),
            B.stride(0), B.stride(1), B.stride(2),
            C.stride(0), C.stride(1), C.stride(2),
            *(D.stride(0), D.stride(1)) if D is not None else 0,
            z_strides[0], z_strides[1], z_strides[2],
            out.stride(0), out.stride(1), out.stride(2),
            dt_softplus,
            tie_hdim,
            BLOCK_SIZE_M,
            num_warps=num_warps,
        )
    if not has_heads:
        out = out.squeeze(1)
    return out


def selective_state_update_ref(state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False):
    """
    Argument:
        state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
        x: (batch, dim) or (batch, nheads, dim)
        dt: (batch, dim) or (batch, nheads, dim)
        A: (dim, dstate) or (nheads, dim, dstate)
        B: (batch, dstate) or (batch, ngroups, dstate)
        C: (batch, dstate) or (batch, ngroups, dstate)
        D: (dim,) or (nheads, dim)
        z: (batch, dim) or (batch, nheads, dim)
        dt_bias: (dim,) or (nheads, dim)
    Return:
        out: (batch, dim) or (batch, nheads, dim)
    """
    has_heads = state.dim() > 3
    if state.dim() == 3:
        state = state.unsqueeze(1)
    if x.dim() == 2:
        x = x.unsqueeze(1)
    if dt.dim() == 2:
        dt = dt.unsqueeze(1)
    if A.dim() == 2:
        A = A.unsqueeze(0)
    if B.dim() == 2:
        B = B.unsqueeze(1)
    if C.dim() == 2:
        C = C.unsqueeze(1)
    if D is not None and D.dim() == 1:
        D = D.unsqueeze(0)
    if z is not None and z.dim() == 2:
        z = z.unsqueeze(1)
    if dt_bias is not None and dt_bias.dim() == 1:
        dt_bias = dt_bias.unsqueeze(0)
    batch, nheads, dim, dstate = state.shape
    assert x.shape == (batch, nheads, dim)
    assert dt.shape == x.shape
    assert A.shape == (nheads, dim, dstate)
    ngroups = B.shape[1]
    assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
    assert B.shape == (batch, ngroups, dstate)
    assert C.shape == B.shape
    if D is not None:
        assert D.shape == (nheads, dim)
    if z is not None:
        assert z.shape == x.shape
    if dt_bias is not None:
        assert dt_bias.shape == (nheads, dim)
        dt = dt + dt_bias
    dt = F.softplus(dt) if dt_softplus else dt
    dA = torch.exp(rearrange(dt, "b h d -> b h d 1") * A)  # (batch, nheads, dim, dstate)
    B = repeat(B, "b g n -> b (g h) n", h=nheads // ngroups)  # (batch, nheads, dstate)
    C = repeat(C, "b g n -> b (g h) n", h=nheads // ngroups)  # (batch, nheads, dstate)
    dB = rearrange(dt, "b h d -> b h d 1") * rearrange(B, "b h n -> b h 1 n")  # (batch, nheads, dim, dstate)
    state.copy_(state * dA + dB * rearrange(x, "b h d -> b h d 1"))  # (batch, dim, dstate
    out = torch.einsum("bhdn,bhn->bhd", state.to(C.dtype), C)
    if D is not None:
        out += (x * D).to(out.dtype)
    out = (out if z is None else out * F.silu(z)).to(x.dtype)
    if not has_heads:
        out = out.squeeze(1)
    return out