roychao19477
Update mamba issue
c450417
raw
history blame
2.6 kB
import shlex
import subprocess
import spaces
import torch
# install packages for mamba
def install():
print("Install personal packages", flush=True)
subprocess.run(shlex.split("pip install causal_conv1d-1.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install mamba_ssm-1.0.1-cp310-cp310-linux_x86_64.whl"))
install()
import gradio as gr
import torch
import yaml
import librosa
from huggingface_hub import hf_hub_download
from models.stfts import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400 import cal_pcs
# download model files from your HF repo
ckpt = hf_hub_download("rc19477/Speech_Enhancement_Mamba",
"ckpts/SEMamba_advanced.pth")
cfg_f = hf_hub_download("rc19477/Speech_Enhancement_Mamba",
"recipes/SEMamba_advanced.yaml")
# load config
with open(cfg_f) as f:
cfg = yaml.safe_load(f)
stft_cfg = cfg["stft_cfg"]
model_cfg = cfg["model_cfg"]
sr = stft_cfg["sampling_rate"]
n_fft = stft_cfg["n_fft"]
hop_size = stft_cfg["hop_size"]
win_size = stft_cfg["win_size"]
compress_ff = model_cfg["compress_factor"]
# init model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SEMamba(cfg).to(device)
sdict = torch.load(ckpt, map_location=device)
model.load_state_dict(sdict["generator"])
model.eval()
def enhance(audio, do_pcs):
orig_sr, wav_np = audio
# 1) resample to 16 kHz if needed
if orig_sr != sr:
wav_np = librosa.resample(wav_np, orig_sr, sr)
wav = torch.from_numpy(wav_np).float().to(device)
# normalize
norm = torch.sqrt(len(wav) / torch.sum(wav**2))
wav = (wav * norm).unsqueeze(0)
# STFT β†’ model β†’ ISTFT
amp, pha, _ = mag_phase_stft(wav, n_fft, hop_size, win_size, compress_ff)
amp_g, pha_g = model(amp, pha)
out = mag_phase_istft(amp_g, pha_g, n_fft, hop_size, win_size, compress_ff)
out = (out / norm).squeeze().cpu().numpy()
# optional PCS filter
if do_pcs:
out = cal_pcs(out)
# 2) resample back to original rate
if orig_sr != sr:
out = librosa.resample(out, sr, orig_sr)
return orig_sr, out
demo = gr.Interface(
fn=enhance,
inputs=[
gr.Audio(source="upload", type="numpy", label="Noisy wav"),
gr.Checkbox(label="Apply PCS post-processing", value=False),
],
outputs=gr.Audio(type="numpy", label="Enhanced wav"),
title="SEMamba Speech Enhancement",
description="Upload a noisy WAV; tick **Apply PCS** for the pcs400 filter.",
)
demo.launch()