import shlex import subprocess import spaces import torch import gradio as gr # install packages for mamba def install_mamba(): #subprocess.run(shlex.split("pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118")) #subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) #subprocess.run(shlex.split("pip install numpy==1.26.4")) install_mamba() ABOUT = """ # SEMamba: Speech Enhancement A Mamba-based model that denoises real-world audio. Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram. """ import torch import yaml import librosa import librosa.display import matplotlib import numpy as np import soundfile as sf import matplotlib.pyplot as plt from models.stfts import mag_phase_stft, mag_phase_istft from models.generator import SEMamba from models.pcs400 import cal_pcs ckpt = "ckpts/SEMamba_advanced.pth" cfg_f = "recipes/SEMamba_advanced.yaml" # load config with open(cfg_f, 'r') as f: cfg = yaml.safe_load(f) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = "cuda" model = SEMamba(cfg).to(device) sdict = torch.load(ckpt, map_location=device) model.load_state_dict(sdict["generator"]) model.eval() @spaces.GPU def enhance(filepath): with torch.no_grad(): # load & resample wav, orig_sr = librosa.load(filepath, sr=None) if orig_sr != 16000: wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000) x = torch.from_numpy(wav).float().to(device) norm = torch.sqrt(len(x)/torch.sum(x**2)) #x = (x * norm).unsqueeze(0) x = (x * norm) # split into 4s segments (64000 samples) segment_len = 4 * 16000 chunks = x.split(segment_len) enhanced_chunks = [] for chunk in chunks: if len(chunk) < segment_len: pad = torch.zeros(segment_len - len(chunk), device=chunk.device) chunk = torch.cat([chunk, pad]) chunk = chunk.unsqueeze(0) amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3) amp2, pha2, _ = model(amp, pha) out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3) out = (out / norm).squeeze(0) enhanced_chunks.append(out) out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy() # trim padding # back to original rate if orig_sr != 16000: out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr) # Normalize out = out / np.max(np.abs(out)) * 0.85 # write file sf.write("enhanced.wav", out, orig_sr) # spectrograms fig, axs = plt.subplots(1, 2, figsize=(16, 4)) # noisy D_noisy = librosa.stft(wav, n_fft=1024, hop_length=512) S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max) librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=512, x_axis="time", y_axis="hz", ax=axs[0]) axs[0].set_title("Noisy Spectrogram") # enhanced D_clean = librosa.stft(out, n_fft=1024, hop_length=512) S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max) librosa.display.specshow(S_clean, sr=orig_sr, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1]) axs[1].set_title("Enhanced Spectrogram") plt.tight_layout() return "enhanced.wav", fig with gr.Blocks() as demo: gr.Markdown(ABOUT) input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True) enhance_btn = gr.Button("Enhance") output_audio = gr.Audio(label="Enhanced Audio", type="filepath") plot_output = gr.Plot(label="Spectrograms") enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output]) demo.queue().launch()