rca-umb commited on
Commit
ab6b774
·
verified ·
1 Parent(s): 9bd3a48

Switch to Qwen

Browse files
Files changed (1) hide show
  1. app.py +199 -199
app.py CHANGED
@@ -1,200 +1,200 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
- from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool, InferenceClientModel
7
-
8
- # (Keep Constants as is)
9
- # --- Constants ---
10
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
-
12
- # --- Basic Agent Definition ---
13
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
- class MyAgent(CodeAgent):
15
- def __init__(self):
16
- super().__init__(
17
- model=InferenceClientModel(
18
- model_id="google/gemma-3-1b-it",
19
- ),
20
- tools=[
21
- DuckDuckGoSearchTool(),
22
- VisitWebpageTool()
23
- ],
24
- )
25
-
26
- def run_and_submit_all( profile: gr.OAuthProfile | None):
27
- """
28
- Fetches all questions, runs the BasicAgent on them, submits all answers,
29
- and displays the results.
30
- """
31
- # --- Determine HF Space Runtime URL and Repo URL ---
32
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
33
-
34
- if profile:
35
- username= f"{profile.username}"
36
- print(f"User logged in: {username}")
37
- else:
38
- print("User not logged in.")
39
- return "Please Login to Hugging Face with the button.", None
40
-
41
- api_url = DEFAULT_API_URL
42
- questions_url = f"{api_url}/questions"
43
- submit_url = f"{api_url}/submit"
44
-
45
- # 1. Instantiate Agent ( modify this part to create your agent)
46
- try:
47
- agent = MyAgent()
48
- except Exception as e:
49
- print(f"Error instantiating agent: {e}")
50
- return f"Error initializing agent: {e}", None
51
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
52
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
53
- print(agent_code)
54
-
55
- # 2. Fetch Questions
56
- print(f"Fetching questions from: {questions_url}")
57
- try:
58
- response = requests.get(questions_url, timeout=15)
59
- response.raise_for_status()
60
- questions_data = response.json()
61
- if not questions_data:
62
- print("Fetched questions list is empty.")
63
- return "Fetched questions list is empty or invalid format.", None
64
- print(f"Fetched {len(questions_data)} questions.")
65
- except requests.exceptions.RequestException as e:
66
- print(f"Error fetching questions: {e}")
67
- return f"Error fetching questions: {e}", None
68
- except requests.exceptions.JSONDecodeError as e:
69
- print(f"Error decoding JSON response from questions endpoint: {e}")
70
- print(f"Response text: {response.text[:500]}")
71
- return f"Error decoding server response for questions: {e}", None
72
- except Exception as e:
73
- print(f"An unexpected error occurred fetching questions: {e}")
74
- return f"An unexpected error occurred fetching questions: {e}", None
75
-
76
- # 3. Run your Agent
77
- results_log = []
78
- answers_payload = []
79
- print(f"Running agent on {len(questions_data)} questions...")
80
- for item in questions_data:
81
- task_id = item.get("task_id")
82
- question_text = item.get("question")
83
- if not task_id or question_text is None:
84
- print(f"Skipping item with missing task_id or question: {item}")
85
- continue
86
- try:
87
- submitted_answer = agent(question_text)
88
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
89
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
90
- except Exception as e:
91
- print(f"Error running agent on task {task_id}: {e}")
92
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
93
-
94
- if not answers_payload:
95
- print("Agent did not produce any answers to submit.")
96
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
97
-
98
- # 4. Prepare Submission
99
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
100
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
101
- print(status_update)
102
-
103
- # 5. Submit
104
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
105
- try:
106
- response = requests.post(submit_url, json=submission_data, timeout=60)
107
- response.raise_for_status()
108
- result_data = response.json()
109
- final_status = (
110
- f"Submission Successful!\n"
111
- f"User: {result_data.get('username')}\n"
112
- f"Overall Score: {result_data.get('score', 'N/A')}% "
113
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
114
- f"Message: {result_data.get('message', 'No message received.')}"
115
- )
116
- print("Submission successful.")
117
- results_df = pd.DataFrame(results_log)
118
- return final_status, results_df
119
- except requests.exceptions.HTTPError as e:
120
- error_detail = f"Server responded with status {e.response.status_code}."
121
- try:
122
- error_json = e.response.json()
123
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
124
- except requests.exceptions.JSONDecodeError:
125
- error_detail += f" Response: {e.response.text[:500]}"
126
- status_message = f"Submission Failed: {error_detail}"
127
- print(status_message)
128
- results_df = pd.DataFrame(results_log)
129
- return status_message, results_df
130
- except requests.exceptions.Timeout:
131
- status_message = "Submission Failed: The request timed out."
132
- print(status_message)
133
- results_df = pd.DataFrame(results_log)
134
- return status_message, results_df
135
- except requests.exceptions.RequestException as e:
136
- status_message = f"Submission Failed: Network error - {e}"
137
- print(status_message)
138
- results_df = pd.DataFrame(results_log)
139
- return status_message, results_df
140
- except Exception as e:
141
- status_message = f"An unexpected error occurred during submission: {e}"
142
- print(status_message)
143
- results_df = pd.DataFrame(results_log)
144
- return status_message, results_df
145
-
146
-
147
- # --- Build Gradio Interface using Blocks ---
148
- with gr.Blocks() as demo:
149
- gr.Markdown("# Basic Agent Evaluation Runner")
150
- gr.Markdown(
151
- """
152
- **Instructions:**
153
-
154
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
155
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
156
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
157
-
158
- ---
159
- **Disclaimers:**
160
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
161
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
162
- """
163
- )
164
-
165
- gr.LoginButton()
166
-
167
- run_button = gr.Button("Run Evaluation & Submit All Answers")
168
-
169
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
170
- # Removed max_rows=10 from DataFrame constructor
171
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
172
-
173
- run_button.click(
174
- fn=run_and_submit_all,
175
- outputs=[status_output, results_table]
176
- )
177
-
178
- if __name__ == "__main__":
179
- print("\n" + "-"*30 + " App Starting " + "-"*30)
180
- # Check for SPACE_HOST and SPACE_ID at startup for information
181
- space_host_startup = os.getenv("SPACE_HOST")
182
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
183
-
184
- if space_host_startup:
185
- print(f"✅ SPACE_HOST found: {space_host_startup}")
186
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
187
- else:
188
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
189
-
190
- if space_id_startup: # Print repo URLs if SPACE_ID is found
191
- print(f"✅ SPACE_ID found: {space_id_startup}")
192
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
193
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
194
- else:
195
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
196
-
197
- print("-"*(60 + len(" App Starting ")) + "\n")
198
-
199
- print("Launching Gradio Interface for Basic Agent Evaluation...")
200
  demo.launch(debug=True, share=False)
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool, InferenceClientModel
7
+
8
+ # (Keep Constants as is)
9
+ # --- Constants ---
10
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
+
12
+ # --- Basic Agent Definition ---
13
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
+ class MyAgent(CodeAgent):
15
+ def __init__(self):
16
+ super().__init__(
17
+ model=InferenceClientModel(
18
+ model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
19
+ ),
20
+ tools=[
21
+ DuckDuckGoSearchTool(),
22
+ VisitWebpageTool()
23
+ ],
24
+ )
25
+
26
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
27
+ """
28
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
29
+ and displays the results.
30
+ """
31
+ # --- Determine HF Space Runtime URL and Repo URL ---
32
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
33
+
34
+ if profile:
35
+ username= f"{profile.username}"
36
+ print(f"User logged in: {username}")
37
+ else:
38
+ print("User not logged in.")
39
+ return "Please Login to Hugging Face with the button.", None
40
+
41
+ api_url = DEFAULT_API_URL
42
+ questions_url = f"{api_url}/questions"
43
+ submit_url = f"{api_url}/submit"
44
+
45
+ # 1. Instantiate Agent ( modify this part to create your agent)
46
+ try:
47
+ agent = MyAgent()
48
+ except Exception as e:
49
+ print(f"Error instantiating agent: {e}")
50
+ return f"Error initializing agent: {e}", None
51
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
52
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
53
+ print(agent_code)
54
+
55
+ # 2. Fetch Questions
56
+ print(f"Fetching questions from: {questions_url}")
57
+ try:
58
+ response = requests.get(questions_url, timeout=15)
59
+ response.raise_for_status()
60
+ questions_data = response.json()
61
+ if not questions_data:
62
+ print("Fetched questions list is empty.")
63
+ return "Fetched questions list is empty or invalid format.", None
64
+ print(f"Fetched {len(questions_data)} questions.")
65
+ except requests.exceptions.RequestException as e:
66
+ print(f"Error fetching questions: {e}")
67
+ return f"Error fetching questions: {e}", None
68
+ except requests.exceptions.JSONDecodeError as e:
69
+ print(f"Error decoding JSON response from questions endpoint: {e}")
70
+ print(f"Response text: {response.text[:500]}")
71
+ return f"Error decoding server response for questions: {e}", None
72
+ except Exception as e:
73
+ print(f"An unexpected error occurred fetching questions: {e}")
74
+ return f"An unexpected error occurred fetching questions: {e}", None
75
+
76
+ # 3. Run your Agent
77
+ results_log = []
78
+ answers_payload = []
79
+ print(f"Running agent on {len(questions_data)} questions...")
80
+ for item in questions_data:
81
+ task_id = item.get("task_id")
82
+ question_text = item.get("question")
83
+ if not task_id or question_text is None:
84
+ print(f"Skipping item with missing task_id or question: {item}")
85
+ continue
86
+ try:
87
+ submitted_answer = agent(question_text)
88
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
89
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
90
+ except Exception as e:
91
+ print(f"Error running agent on task {task_id}: {e}")
92
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
93
+
94
+ if not answers_payload:
95
+ print("Agent did not produce any answers to submit.")
96
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
97
+
98
+ # 4. Prepare Submission
99
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
100
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
101
+ print(status_update)
102
+
103
+ # 5. Submit
104
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
105
+ try:
106
+ response = requests.post(submit_url, json=submission_data, timeout=60)
107
+ response.raise_for_status()
108
+ result_data = response.json()
109
+ final_status = (
110
+ f"Submission Successful!\n"
111
+ f"User: {result_data.get('username')}\n"
112
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
113
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
114
+ f"Message: {result_data.get('message', 'No message received.')}"
115
+ )
116
+ print("Submission successful.")
117
+ results_df = pd.DataFrame(results_log)
118
+ return final_status, results_df
119
+ except requests.exceptions.HTTPError as e:
120
+ error_detail = f"Server responded with status {e.response.status_code}."
121
+ try:
122
+ error_json = e.response.json()
123
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
124
+ except requests.exceptions.JSONDecodeError:
125
+ error_detail += f" Response: {e.response.text[:500]}"
126
+ status_message = f"Submission Failed: {error_detail}"
127
+ print(status_message)
128
+ results_df = pd.DataFrame(results_log)
129
+ return status_message, results_df
130
+ except requests.exceptions.Timeout:
131
+ status_message = "Submission Failed: The request timed out."
132
+ print(status_message)
133
+ results_df = pd.DataFrame(results_log)
134
+ return status_message, results_df
135
+ except requests.exceptions.RequestException as e:
136
+ status_message = f"Submission Failed: Network error - {e}"
137
+ print(status_message)
138
+ results_df = pd.DataFrame(results_log)
139
+ return status_message, results_df
140
+ except Exception as e:
141
+ status_message = f"An unexpected error occurred during submission: {e}"
142
+ print(status_message)
143
+ results_df = pd.DataFrame(results_log)
144
+ return status_message, results_df
145
+
146
+
147
+ # --- Build Gradio Interface using Blocks ---
148
+ with gr.Blocks() as demo:
149
+ gr.Markdown("# Basic Agent Evaluation Runner")
150
+ gr.Markdown(
151
+ """
152
+ **Instructions:**
153
+
154
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
155
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
156
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
157
+
158
+ ---
159
+ **Disclaimers:**
160
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
161
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
162
+ """
163
+ )
164
+
165
+ gr.LoginButton()
166
+
167
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
168
+
169
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
170
+ # Removed max_rows=10 from DataFrame constructor
171
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
172
+
173
+ run_button.click(
174
+ fn=run_and_submit_all,
175
+ outputs=[status_output, results_table]
176
+ )
177
+
178
+ if __name__ == "__main__":
179
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
180
+ # Check for SPACE_HOST and SPACE_ID at startup for information
181
+ space_host_startup = os.getenv("SPACE_HOST")
182
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
183
+
184
+ if space_host_startup:
185
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
186
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
187
+ else:
188
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
189
+
190
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
191
+ print(f"✅ SPACE_ID found: {space_id_startup}")
192
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
193
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
194
+ else:
195
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
196
+
197
+ print("-"*(60 + len(" App Starting ")) + "\n")
198
+
199
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
200
  demo.launch(debug=True, share=False)