Spaces:
Sleeping
Sleeping
File size: 1,385 Bytes
d19f14b 232d877 389bcc2 6d635d0 d19f14b 61b1f0f 565913e d19f14b 2a84c1f 6d635d0 232d877 6d635d0 232d877 2a84c1f 232d877 2a84c1f 232d877 2a84c1f 232d877 2a84c1f 232d877 2a84c1f 6d635d0 1f742b2 6d635d0 ae5112e d19f14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from llama_cpp import Llama
import gradio as gr
llm = Llama.from_pretrained(
repo_id="rcarioniporras/model_modelcentric_llama_gguf",
filename="unsloth.Q4_K_M.gguf",
)
def predict(message, history):
messages = [{"role": "system", "content": "You are a helpful assistant who answers questions in a concise but thorough way. Prioritize clarity and usefulness in all interactions."}]
for user_message, bot_message in history:
if user_message:
messages.append({"role": "user", "content": user_message})
if bot_message:
messages.append({"role": "assistant", "content": bot_message})
messages.append({"role": "user", "content": message})
response = ""
for chunk in llm.create_chat_completion(
stream=True,
messages=messages,
):
part = chunk["choices"][0]["delta"].get("content", None)
if part:
response += part
yield response
conversation_starters = [
{"text": "What is object-oriented programming (OOP), and what are its four main principles?"},
{"text": "Compare the stack and queue data structures."},
{"text": "Simplify the expression 3(x+4)−2(2x−1)."},
{"text": "What are some fun facts about space?"}
]
demo = gr.ChatInterface(fn=predict, theme="Shivi/calm_seafoam")
if __name__ == "__main__":
demo.launch() |