Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,236 Bytes
135075d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import random
from pathlib import Path
from PIL import Image
import cv2
import ffmpeg
import io
import av
import numpy as np
import torch
from torchvision.transforms.functional import normalize
from basicsr.data.degradations import (random_add_gaussian_noise,
random_mixed_kernels)
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, img2tensor, imfrombytes, scandir
from basicsr.utils.registry import DATASET_REGISTRY
from facelib.utils.face_restoration_helper import FaceAligner
from torch.utils import data as data
@DATASET_REGISTRY.register()
class SingleVFHQDataset(data.Dataset):
"""Support for blind setting adopted in paper. We excludes the random scale compared to GFPGAN.
This dataset is adopted in BasicVSR.
The degradation order is blur+downsample+noise
Note that we skip the low quality frames within the VFHQ clip.
Directly read image by cv2. Generate LR images online.
NOTE: The specific degradation order is blur-noise-downsample-crf-upsample
The keys are generated from a meta info txt file.
Key format: subfolder-name/clip-length/frame-name
Key examples: "id00020#t0bbIRgKKzM#00381.txt#000.mp4/00000152/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_clip_meta_info (srt): Data root path for meta info of each gt clip.
global_meta_info_file (str): Path for global meta information file.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_flip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h
and w for implementation).
"""
def __init__(self, opt):
super(SingleVFHQDataset, self).__init__()
self.opt = opt
self.gt_root = Path(opt['dataroot_gt'])
self.normalize = opt.get('normalize', False)
self.need_align = opt.get('need_align', False)
logger = get_root_logger()
self.keys = []
with open(opt['global_meta_info_file'], 'r') as fin:
for line in fin:
real_clip_path = '/'.join(line.split('/')[:-1])
clip_length = line.split('/')[-1]
clip_length = int(clip_length)
self.keys.extend(
[f'{real_clip_path}/{clip_length:08d}/{frame_idx:08d}' for frame_idx in range(int(clip_length))])
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
self.io_backend_opt['db_paths'] = [self.gt_root]
self.io_backend_opt['client_keys'] = ['gt']
if self.need_align:
self.dataroot_meta_info = opt['dataroot_meta_info']
self.face_aligner = FaceAligner(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
key = self.keys[index]
real_clip_path = '/'.join(key.split('/')[:-2])
clip_length = int(key.split('/')[-2])
frame_idx = int(key.split('/')[-1])
# get the neighboring GT frames
flag = real_clip_path.split('/')[0]
clip_name = real_clip_path.split('/')[-1]
paths = sorted(list(scandir(os.path.join(
self.gt_root, clip_name))))
assert len(paths) == clip_length, "Wrong length of frame list"
img_gt_path = os.path.join(
self.gt_root, clip_name, paths[frame_idx])
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# alignment
if self.need_align:
clip_info_path = os.path.join(
self.dataroot_meta_info, f'{clip_name}.txt')
clip_info = []
with open(clip_info_path, 'r', encoding='utf-8') as fin:
for line in fin:
line = line.strip()
if line.startswith('0'):
clip_info.append(line)
landmarks_str = clip_info[frame_idx].split(' ')[1:]
landmarks = np.array([float(x)
for x in landmarks_str]).reshape(5, 2)
self.face_aligner.clean_all()
# align and warp each face
img_gt = self.face_aligner.align_single_face(img_gt, landmarks)
# augmentation - flip, rotate
img_gt = augment(img_gt, self.opt['use_flip'], self.opt['use_rot'])
img_in = img_gt
# ------------- end --------------#
img_in, img_gt = img2tensor([img_in, img_gt])
if self.normalize:
normalize(img_in, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
normalize(img_gt, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
# img_lqs: (t, c, h, w)
# img_gts: (t, c, h, w)
# key: str
return {'in': img_in, 'gt': img_gt, 'key': key}
def __len__(self):
return len(self.keys)
@DATASET_REGISTRY.register()
class VFHQDataset(data.Dataset):
"""Support for blind setting adopted in paper. We excludes the random scale compared to GFPGAN.
This dataset is adopted in BasicVSR.
The degradation order is blur+downsample+noise
Note that we skip the low quality frames within the VFHQ clip.
Directly read image by cv2. Generate LR images online.
NOTE: The specific degradation order is blur-noise-downsample-crf-upsample
The keys are generated from a meta info txt file.
Key format: subfolder-name/clip-length/frame-name
Key examples: "id00020#t0bbIRgKKzM#00381.txt#000.mp4/00000152/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_clip_meta_info (srt): Data root path for meta info of each gt clip.
global_meta_info_file (str): Path for global meta information file.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_flip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h
and w for implementation).
"""
def __init__(self, opt):
super(VFHQDataset, self).__init__()
self.opt = opt
self.gt_root = Path(opt['dataroot_gt'])
self.num_frame = opt['num_frame']
self.scale = opt['scale']
self.need_align = opt.get('need_align', False)
self.normalize = opt.get('normalize', False)
self.keys = []
with open(opt['global_meta_info_file'], 'r') as fin:
for line in fin:
real_clip_path = '/'.join(line.split('/')[:-1])
clip_length = line.split('/')[-1]
clip_length = int(clip_length)
self.keys.extend(
[f'{real_clip_path}/{clip_length:08d}/{frame_idx:08d}' for frame_idx in range(int(clip_length))])
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
self.io_backend_opt['db_paths'] = [self.gt_root]
self.io_backend_opt['client_keys'] = ['gt']
# temporal augmentation configs
self.interval_list = opt['interval_list']
self.random_reverse = opt['random_reverse']
interval_str = ','.join(str(x) for x in opt['interval_list'])
logger = get_root_logger()
logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
f'random reverse is {self.random_reverse}.')
# degradations
# blur
self.blur_kernel_size = opt['blur_kernel_size']
self.kernel_list = opt['kernel_list']
self.kernel_prob = opt['kernel_prob']
self.blur_x_sigma = opt['blur_x_sigma']
self.blur_y_sigma = opt['blur_y_sigma']
# noise
self.noise_range = opt['noise_range']
# resize
self.resize_prob = opt['resize_prob']
# crf
self.crf_range = opt['crf_range']
# codec
self.vcodec = opt['vcodec']
self.vcodec_prob = opt['vcodec_prob']
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, '
f'x_sigma: [{", ".join(map(str, self.blur_x_sigma))}], '
f'y_sigma: [{", ".join(map(str, self.blur_y_sigma))}], ')
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
logger.info(
f'CRF compression: [{", ".join(map(str, self.crf_range))}]')
logger.info(f'Codec: [{", ".join(map(str, self.vcodec))}]')
if self.need_align:
self.dataroot_meta_info = opt['dataroot_meta_info']
self.face_aligner = FaceAligner(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
key = self.keys[index]
real_clip_path = '/'.join(key.split('/')[:-2])
clip_length = int(key.split('/')[-2])
frame_idx = int(key.split('/')[-1])
clip_name = real_clip_path.split('/')[-1]
paths = sorted(list(scandir(os.path.join(
self.gt_root, clip_name))))
# determine the neighboring frames
interval = random.choice(self.interval_list)
# exceed the length, re-select a new clip
while (clip_length - self.num_frame * interval) < 0:
interval = random.choice(self.interval_list)
# ensure not exceeding the borders
# print(self.num_frame, type(self.num_frame))
# print(interval, type(interval))
start_frame_idx = frame_idx - self.num_frame // 2 * interval
end_frame_idx = frame_idx + self.num_frame // 2 * interval
# flag = (start_frame_idx < 0) or (end_frame_idx > clip_length)
# print(key, start_frame_idx, end_frame_idx, interval, flag)
# each clip has 100+ frames
while (start_frame_idx < 0) or (end_frame_idx > clip_length):
frame_idx = random.randint(self.num_frame//2 * interval,
clip_length - self.num_frame//2 * interval)
start_frame_idx = frame_idx - self.num_frame // 2 * interval
end_frame_idx = frame_idx + self.num_frame // 2 * interval
neighbor_list = list(
range(start_frame_idx, end_frame_idx, interval))
# print(start_frame_idx, end_frame_idx, frame_idx, interval)
# random reverse
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
assert len(neighbor_list) == self.num_frame, (
f'Wrong length of neighbor list: {len(neighbor_list)}')
# get the neighboring GT frames
img_gts = []
if self.need_align:
clip_info_path = os.path.join(
self.dataroot_meta_info, f'{clip_name}.txt')
clip_info = []
with open(clip_info_path, 'r', encoding='utf-8') as fin:
for line in fin:
line = line.strip()
if line.startswith('0'):
clip_info.append(line)
for neighbor in neighbor_list:
assert paths[neighbor] == clip_info[neighbor].split(' ')[0], \
f'{clip_name}: Mismatch frame {paths[neighbor]} and {clip_info[neighbor]}'
# img_gt_path = os.path.join(
# self.gt_root, clip_name, f'{neighbor:08d}.png')
img_gt_path = os.path.join(
self.gt_root, clip_name, paths[neighbor])
# img_bytes = self.file_client.get(img_gt_path, 'gt')
# img_gt = imfrombytes(img_bytes, float32=True)
# img_gt = cv2.imread(img_gt_path) / 255.0
img_gt = np.asarray(Image.open(img_gt_path))[:, :, ::-1] / 255.0
img_gts.append(img_gt)
# augmentation - flip, rotate
img_gts = augment(img_gts, self.opt['use_flip'], self.opt['use_rot'])
# ------------- generate LQ frames --------------#
# add blur
kernel = random_mixed_kernels(self.kernel_list, self.kernel_prob, self.blur_kernel_size, self.blur_x_sigma,
self.blur_y_sigma)
img_lqs = [cv2.filter2D(v, -1, kernel) for v in img_gts]
# add noise
img_lqs = [
random_add_gaussian_noise(v, self.noise_range, gray_prob=0.5, clip=True, rounds=False) for v in img_lqs
]
# downsample
original_height, original_width = img_gts[0].shape[0:2]
resize_type = random.choices(
[cv2.INTER_AREA, cv2.INTER_LINEAR, cv2.INTER_CUBIC], self.resize_prob)[0]
resized_height, resized_width = int(
original_height // self.scale), int(original_width // self.scale)
# ensure the resized_height and resized_width are even numbers
img_lqs = [cv2.resize(v, (resized_width, resized_height),
interpolation=resize_type) for v in img_lqs]
# add noise
img_lqs = [
random_add_gaussian_noise(v, self.noise_range, gray_prob=0.5, clip=True, rounds=False) for v in img_lqs
]
# ffmpeg
crf = np.random.randint(self.crf_range[0], self.crf_range[1])
codec = random.choices(self.vcodec, self.vcodec_prob)[0]
buf = io.BytesIO()
with av.open(buf, 'w', 'mp4') as container:
stream = container.add_stream(codec, rate=1)
stream.height = resized_height
stream.width = resized_width
stream.pix_fmt = 'yuv420p'
stream.options = {'crf': str(crf)}
for img_lq in img_lqs:
img_lq = np.clip(img_lq * 255, 0, 255).astype(np.uint8)
frame = av.VideoFrame.from_ndarray(img_lq, format='rgb24')
frame.pict_type = 0 # Changed from 'NONE' to 0
for packet in stream.encode(frame):
container.mux(packet)
# Flush stream
for packet in stream.encode():
container.mux(packet)
img_lqs = []
with av.open(buf, 'r', 'mp4') as container:
if container.streams.video:
for frame in container.decode(**{'video': 0}):
img_lqs.append(frame.to_rgb().to_ndarray() / 255.)
assert len(img_lqs) == len(img_gts), 'Wrong length'
# ------------ Align -------------#
if self.need_align:
align_lqs, align_gts = [], []
for frame_idx, (img_lq, img_gt) in enumerate(zip(img_lqs, img_gts)):
landmarks_str = clip_info[frame_idx].split(' ')[1:]
# print(clip_name, paths[neighbor], landmarks_str)
landmarks = np.array([float(x)
for x in landmarks_str]).reshape(5, 2)
self.face_aligner.clean_all()
# align and warp each face
img_lq, img_gt = self.face_aligner.align_pair_face(
img_lq, img_gt, landmarks)
align_lqs.append(img_lq)
align_gts.append(img_gt)
img_lqs, img_gts = align_lqs, align_gts
# ------------- end --------------#
img_gts = img2tensor(img_gts)
img_lqs = img2tensor(img_lqs)
img_gts = torch.stack(img_gts, dim=0)
img_lqs = torch.stack(img_lqs, dim=0)
if self.normalize:
normalize(img_lqs, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
normalize(img_gts, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
# img_lqs: (t, c, h, w)
# img_gts: (t, c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gts, 'key': key}
def __len__(self):
return len(self.keys)
|