rcfeng's picture
Add progress tracking (#2)
df1c27c verified
import os
import cv2
import argparse
import glob
import spaces
import torch
import numpy as np
from tqdm import tqdm
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils.misc import gpu_is_available, get_device
from scipy.ndimage import gaussian_filter1d
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray
from basicsr.utils.video_util import VideoReader, VideoWriter
from basicsr.utils.registry import ARCH_REGISTRY
import gradio as gr
from torch.hub import download_url_to_file
title = r"""<h1 align="center">KEEP: Kalman-Inspired Feature Propagation for Video Face Super-Resolution</h1>"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/jnjaby/KEEP' target='_blank'><b>Kalman-Inspired FEaturE Propagation for Video Face Super-Resolution (ECCV 2024)</b></a>.<br>
πŸ”₯ KEEP is a robust video face super-resolution algorithm.<br>
πŸ€— Try to drop your own face video, and get the restored results!<br>
"""
post_article = r"""
If you found KEEP helpful, please consider ⭐ the <a href='https://github.com/jnjaby/KEEP' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/jnjaby/KEEP)](https://github.com/jnjaby/KEEP)
---
πŸ“ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@InProceedings{feng2024keep,
title = {Kalman-Inspired FEaturE Propagation for Video Face Super-Resolution},
author = {Feng, Ruicheng and Li, Chongyi and Loy, Chen Change},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2024}
}
```
πŸ“‹ **License**
<br>
This project is licensed under <a rel="license" href="https://github.com/jnjaby/KEEP/blob/main/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
<br><br>
πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach out via <b>[email protected]</b>.
"""
def interpolate_sequence(sequence):
interpolated_sequence = np.copy(sequence)
missing_indices = np.isnan(sequence)
if np.any(missing_indices):
valid_indices = ~missing_indices
x = np.arange(len(sequence))
interpolated_sequence[missing_indices] = np.interp(x[missing_indices], x[valid_indices], sequence[valid_indices])
return interpolated_sequence
def set_realesrgan():
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
use_half = False
if torch.cuda.is_available():
no_half_gpu_list = ['1650', '1660']
if not any(gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list):
use_half = True
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
upsampler = RealESRGANer(scale=2, model_path="https://github.com/jnjaby/KEEP/releases/download/v1.0.0/RealESRGAN_x2plus.pth", model=model, tile=400, tile_pad=40, pre_pad=0, half=use_half)
if not gpu_is_available():
import warnings
warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA. The unoptimized RealESRGAN is slow on CPU.', category=RuntimeWarning)
return upsampler
@spaces.GPU(duration=300)
def process_video(input_video, draw_box, bg_enhancement):
device = get_device()
args = argparse.Namespace(
input_path=input_video,
upscale=1,
max_length=20,
has_aligned=False,
only_center_face=True,
draw_box=draw_box,
detection_model='retinaface_resnet50',
bg_enhancement=bg_enhancement,
face_upsample=False,
bg_tile=400,
suffix=None,
save_video_fps=None,
model_type='KEEP',
progress=gr.Progress(track_tqdm=True)
)
output_dir = './results/'
os.makedirs(output_dir, exist_ok=True)
model_configs = {
'KEEP': {
'architecture': {
'img_size': 512, 'emb_dim': 256, 'dim_embd': 512, 'n_head': 8, 'n_layers': 9,
'codebook_size': 1024, 'cft_list': ['16', '32', '64'], 'kalman_attn_head_dim': 48,
'num_uncertainty_layers': 3, 'cfa_list': ['16', '32'], 'cfa_nhead': 4, 'cfa_dim': 256, 'cond': 1
},
'checkpoint_dir': '/home/user/app/weights/KEEP',
'checkpoint_url': 'https://github.com/jnjaby/KEEP/releases/download/v1.0.0/KEEP-b76feb75.pth'
},
}
if args.bg_enhancement:
bg_upsampler = set_realesrgan()
else:
bg_upsampler = None
if args.face_upsample:
face_upsampler = bg_upsampler if bg_upsampler is not None else set_realesrgan()
else:
face_upsampler = None
if args.model_type not in model_configs:
raise ValueError(f"Unknown model type: {args.model_type}. Available options: {list(model_configs.keys())}")
config = model_configs[args.model_type]
net = ARCH_REGISTRY.get('KEEP')(**config['architecture']).to(device)
ckpt_path = load_file_from_url(url=config['checkpoint_url'], model_dir=config['checkpoint_dir'], progress=True, file_name=None)
checkpoint = torch.load(ckpt_path, weights_only=True)
net.load_state_dict(checkpoint['params_ema'])
net.eval()
if not args.has_aligned:
print(f'Face detection model: {args.detection_model}')
if bg_upsampler is not None:
print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
else:
print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
face_helper = FaceRestoreHelper(args.upscale, face_size=512, crop_ratio=(1, 1), det_model=args.detection_model, save_ext='png', use_parse=True, device=device)
# Reading the input video.
input_img_list = []
if args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')):
vidreader = VideoReader(args.input_path)
image = vidreader.get_frame()
while image is not None:
input_img_list.append(image)
image = vidreader.get_frame()
fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
vidreader.close()
clip_name = os.path.basename(args.input_path)[:-4]
else:
raise TypeError(f'Unrecognized type of input video {args.input_path}.')
if len(input_img_list) == 0:
raise FileNotFoundError('No input image/video is found...')
print('Detecting keypoints and smooth alignment ...')
if not args.has_aligned:
raw_landmarks = []
for i, img in enumerate(input_img_list):
face_helper.clean_all()
face_helper.read_image(img)
num_det_faces = face_helper.get_face_landmarks_5(only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5, only_keep_largest=True)
if num_det_faces == 1:
raw_landmarks.append(face_helper.all_landmarks_5[0].reshape((10,)))
elif num_det_faces == 0:
raw_landmarks.append(np.array([np.nan]*10))
raw_landmarks = np.array(raw_landmarks)
for i in range(10):
raw_landmarks[:, i] = interpolate_sequence(raw_landmarks[:, i])
video_length = len(input_img_list)
avg_landmarks = gaussian_filter1d(raw_landmarks, 5, axis=0).reshape(video_length, 5, 2)
cropped_faces = []
for i, img in enumerate(input_img_list):
face_helper.clean_all()
face_helper.read_image(img)
face_helper.all_landmarks_5 = [avg_landmarks[i]]
face_helper.align_warp_face()
cropped_face_t = img2tensor(face_helper.cropped_faces[0] / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_faces.append(cropped_face_t)
cropped_faces = torch.stack(cropped_faces, dim=0).unsqueeze(0).to(device)
print('Restoring faces ...')
with torch.no_grad():
video_length = cropped_faces.shape[1]
output = []
for start_idx in range(0, video_length, args.max_length):
end_idx = min(start_idx + args.max_length, video_length)
if end_idx - start_idx == 1:
output.append(net(cropped_faces[:, [start_idx, start_idx], ...], need_upscale=False)[:, 0:1, ...])
else:
output.append(net(cropped_faces[:, start_idx:end_idx, ...], need_upscale=False))
output = torch.cat(output, dim=1).squeeze(0)
assert output.shape[0] == video_length, "Different number of frames"
restored_faces = [tensor2img(x, rgb2bgr=True, min_max=(-1, 1)) for x in output]
del output
torch.cuda.empty_cache()
print('Pasting faces back ...')
restored_frames = []
for i, img in enumerate(input_img_list):
face_helper.clean_all()
if args.has_aligned:
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.is_gray = is_gray(img, threshold=10)
if face_helper.is_gray:
print('Grayscale input: True')
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.all_landmarks_5 = [avg_landmarks[i]]
face_helper.align_warp_face()
face_helper.add_restored_face(restored_faces[i].astype('uint8'))
if not args.has_aligned:
if bg_upsampler is not None:
bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
if args.face_upsample and face_upsampler is not None:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
else:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
restored_frames.append(restored_img)
# Saving the output video.
print('Saving video ...')
height, width = restored_frames[0].shape[:2]
save_restore_path = os.path.join(output_dir, f'{clip_name}.mp4')
vidwriter = VideoWriter(save_restore_path, height, width, fps)
for f in restored_frames:
vidwriter.write_frame(f)
vidwriter.close()
print(f'All results are saved in {save_restore_path}.')
return save_restore_path
# Downloading necessary models and sample videos.
sample_videos_dir = os.path.join("/home/user/app/hugging_face/", "test_sample/")
os.makedirs(sample_videos_dir, exist_ok=True)
download_url_to_file("https://github.com/jnjaby/KEEP/releases/download/media/real_1.mp4", os.path.join(sample_videos_dir, "real_1.mp4"))
download_url_to_file("https://github.com/jnjaby/KEEP/releases/download/media/real_2.mp4", os.path.join(sample_videos_dir, "real_2.mp4"))
download_url_to_file("https://github.com/jnjaby/KEEP/releases/download/media/real_3.mp4", os.path.join(sample_videos_dir, "real_3.mp4"))
download_url_to_file("https://github.com/jnjaby/KEEP/releases/download/media/real_4.mp4", os.path.join(sample_videos_dir, "real_4.mp4"))
model_dir = "/home/user/app/weights/"
model_url = "https://github.com/jnjaby/KEEP/releases/download/v1.0.0/"
_ = load_file_from_url(url=os.path.join(model_url, 'KEEP-b76feb75.pth'),
model_dir=os.path.join(model_dir, "KEEP"), progress=True, file_name=None)
_ = load_file_from_url(url=os.path.join(model_url, 'detection_Resnet50_Final.pth'),
model_dir=os.path.join(model_dir, "facelib"), progress=True, file_name=None)
_ = load_file_from_url(url=os.path.join(model_url, 'detection_mobilenet0.25_Final.pth'),
model_dir=os.path.join(model_dir, "facelib"), progress=True, file_name=None)
_ = load_file_from_url(url=os.path.join(model_url, 'yolov5n-face.pth'),
model_dir=os.path.join(model_dir, "facelib"), progress=True, file_name=None)
_ = load_file_from_url(url=os.path.join(model_url, 'yolov5l-face.pth'),
model_dir=os.path.join(model_dir, "facelib"), progress=True, file_name=None)
_ = load_file_from_url(url=os.path.join(model_url, 'parsing_parsenet.pth'),
model_dir=os.path.join(model_dir, "facelib"), progress=True, file_name=None)
_ = load_file_from_url(url=os.path.join(model_url, 'RealESRGAN_x2plus.pth'),
model_dir=os.path.join(model_dir, "realesrgan"), progress=True, file_name=None)
# Launching the Gradio interface.
demo = gr.Interface(
fn=process_video,
title=title,
description=description,
inputs=[
gr.Video(label="Input Video"),
gr.Checkbox(label="Draw Box", value=False),
gr.Checkbox(label="Background Enhancement", value=False),
],
outputs=gr.Video(label="Processed Video"),
examples=[
[os.path.join(os.path.dirname(__file__), sample_videos_dir, "real_1.mp4"), True, False],
[os.path.join(os.path.dirname(__file__), sample_videos_dir, "real_2.mp4"), True, False],
[os.path.join(os.path.dirname(__file__), sample_videos_dir, "real_3.mp4"), True, False],
[os.path.join(os.path.dirname(__file__), sample_videos_dir, "real_4.mp4"), True, False],
],
cache_examples=False,
article=post_article
)
demo.launch(share=True)