File size: 4,724 Bytes
5a9839d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
from chainlit.types import AskFileResponse

from utilities_2.openai_utils.prompts import (
    UserRolePrompt,
    SystemRolePrompt,
    AssistantRolePrompt,
)
from utilities_2.openai_utils.embedding import EmbeddingModel
from utilities_2.vectordatabase import VectorDatabase
from utilities_2.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from utilities.text_utils import FileLoader
from utilities.pipeline import RetrievalAugmentedQAPipeline
# from utilities.vector_database import QdrantDatabase


def process_file(file, use_rct): 
    fileLoader = FileLoader()
    return fileLoader.load_file(file, use_rct)

system_template = """\

Use the following context to answer a users question. 

If you cannot find the answer in the context, say you don't know the answer. 

The context contains the text from a document. Refer to it as the document not the context.

"""
system_role_prompt = SystemRolePrompt(system_template)

user_prompt_template = """\

Context:

{context}



Question:

{question}

"""
user_role_prompt = UserRolePrompt(user_prompt_template)

@cl.on_chat_start
async def on_chat_start():
    # get user inputs
    res = await cl.AskActionMessage(
        content="Do you want to use Qdrant?",
        actions=[
            cl.Action(name="yes", value="yes", label="βœ… Yes"),
            cl.Action(name="no", value="no", label="❌ No"),
        ],
    ).send()
    use_qdrant = False
    use_qdrant_type = "Local"
    if res and res.get("value") == "yes":
        use_qdrant = True
        local_res = await cl.AskActionMessage(
                content="Do you want to use local or cloud?",
                actions=[
                    cl.Action(name="Local", value="Local", label="βœ… Local"),
                    cl.Action(name="Cloud", value="Cloud", label="❌ Cloud"),
                ],
            ).send()
        if local_res and local_res.get("value") == "Cloud":
            use_qdrant_type = "Cloud"
    use_rct = False
    res = await cl.AskActionMessage(
        content="Do you want to use RecursiveCharacterTextSplitter?",
        actions=[
            cl.Action(name="yes", value="yes", label="βœ… Yes"),
            cl.Action(name="no", value="no", label="❌ No"),
        ],
    ).send()
    if res and res.get("value") == "yes":
        use_rct = True
    
    files = None
    # Wait for the user to upload a file
    while not files:
        files = await cl.AskFileMessage(
            content="Please upload a .txt or .pdf file to begin processing!",
            accept=["text/plain", "application/pdf"],
            max_size_mb=2,
            timeout=180,
        ).send()

    file = files[0]

    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )
    await msg.send()

    texts = process_file(file, use_rct)

    msg = cl.Message(
        content=f"Resulted in {len(texts)} chunks", disable_human_feedback=True
    )
    await msg.send()

    # decide if to use the dict vector store of the Qdrant vector store
    
    # Create a dict vector store
    if use_qdrant == False:
        vector_db = VectorDatabase()
        vector_db = await vector_db.abuild_from_list(texts)
    else:
        embedding_model = EmbeddingModel(embeddings_model_name= "text-embedding-3-small", dimensions=1000)
        if use_qdrant_type == "Local":
            from utilities.vector_database import QdrantDatabase
            vector_db = QdrantDatabase(
                embedding_model=embedding_model 
            )

            vector_db = await vector_db.abuild_from_list(texts)
        
    msg = cl.Message(
        content=f"The Vector store has been created", disable_human_feedback=True
    )
    await msg.send()

    chat_openai = ChatOpenAI()

    # Create a chain
    retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
        vector_db_retriever=vector_db,
        llm=chat_openai,
        system_role_prompt=system_role_prompt,
        user_role_prompt=user_role_prompt
    )
    
    # Let the user know that the system is ready
    msg.content = f"Processing `{file.name}` is complete."
    await msg.update()
    msg.content = f"You can now ask questions about `{file.name}`."
    await msg.update()
    cl.user_session.set("chain", retrieval_augmented_qa_pipeline)


@cl.on_message
async def main(message):
    chain = cl.user_session.get("chain")

    msg = cl.Message(content="")
    result = await chain.arun_pipeline(message.content)

    async for stream_resp in result["response"]:
        await msg.stream_token(stream_resp)

    await msg.send()