Spaces:
Sleeping
Sleeping
Update state object
Browse files- app.py +6 -4
- classes/app_state.py +5 -0
- utilities/rag_utilities.py +31 -15
app.py
CHANGED
@@ -23,16 +23,18 @@ openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
23 |
|
24 |
# Setup our state
|
25 |
state = AppState()
|
|
|
|
|
26 |
state.set_document_urls(document_urls)
|
|
|
27 |
state.set_llm_model("gpt-3.5-turbo")
|
28 |
state.set_embedding_model("text-embedding-3-small")
|
29 |
-
|
|
|
30 |
|
31 |
# Initialize the OpenAI LLM using LangChain
|
32 |
llm = ChatOpenAI(model=state.llm_model, openai_api_key=openai_api_key)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
qdrant_retriever = create_vector_store(state)
|
38 |
|
|
|
23 |
|
24 |
# Setup our state
|
25 |
state = AppState()
|
26 |
+
state.set_debug(False)
|
27 |
+
|
28 |
state.set_document_urls(document_urls)
|
29 |
+
|
30 |
state.set_llm_model("gpt-3.5-turbo")
|
31 |
state.set_embedding_model("text-embedding-3-small")
|
32 |
+
state.set_chunk_size(1000)
|
33 |
+
state.set_chunk_overlap(100)
|
34 |
|
35 |
# Initialize the OpenAI LLM using LangChain
|
36 |
llm = ChatOpenAI(model=state.llm_model, openai_api_key=openai_api_key)
|
37 |
+
state.set_main_llm(llm)
|
|
|
|
|
38 |
|
39 |
qdrant_retriever = create_vector_store(state)
|
40 |
|
classes/app_state.py
CHANGED
@@ -13,6 +13,7 @@ class AppState:
|
|
13 |
self.titles = []
|
14 |
self.documents = []
|
15 |
self.combined_document_objects = []
|
|
|
16 |
self.retriever = None
|
17 |
|
18 |
self.system_template = "You are a helpful assistant"
|
@@ -56,6 +57,10 @@ class AppState:
|
|
56 |
self.combined_document_objects = combined_document_objects
|
57 |
def set_retriever(self, retriever):
|
58 |
self.retriever = retriever
|
|
|
|
|
|
|
|
|
59 |
#
|
60 |
# Method to update the user input
|
61 |
def set_user_input(self, input_text):
|
|
|
13 |
self.titles = []
|
14 |
self.documents = []
|
15 |
self.combined_document_objects = []
|
16 |
+
self.main_llm = None
|
17 |
self.retriever = None
|
18 |
|
19 |
self.system_template = "You are a helpful assistant"
|
|
|
57 |
self.combined_document_objects = combined_document_objects
|
58 |
def set_retriever(self, retriever):
|
59 |
self.retriever = retriever
|
60 |
+
def set_main_llm(self, main_llm):
|
61 |
+
self.main_llm = main_llm
|
62 |
+
def set_debug(self, debug):
|
63 |
+
self.debug = debug
|
64 |
#
|
65 |
# Method to update the user input
|
66 |
def set_user_input(self, input_text):
|
utilities/rag_utilities.py
CHANGED
@@ -5,10 +5,11 @@ from langchain_community.vectorstores import Qdrant
|
|
5 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
6 |
import fitz
|
7 |
import io
|
8 |
-
import tiktoken
|
9 |
-
import requests
|
10 |
import os
|
|
|
|
|
11 |
from utilities.debugger import dprint
|
|
|
12 |
|
13 |
def tiktoken_len(text):
|
14 |
tokens = tiktoken.encoding_for_model("gpt-4o").encode(
|
@@ -55,6 +56,7 @@ def get_documents(state):
|
|
55 |
"title": title,
|
56 |
"metadata": metadata,
|
57 |
"single_text_document": single_text_document,
|
|
|
58 |
}
|
59 |
state.add_document(document)
|
60 |
dprint(state, f"Title of Document: {title}")
|
@@ -64,14 +66,7 @@ def get_documents(state):
|
|
64 |
|
65 |
def create_chunked_documents(state):
|
66 |
get_documents(state)
|
67 |
-
|
68 |
-
# file_path_2 = "data/NIST.AI.600-1.pdf"
|
69 |
-
# loader = PyMuPDFLoader(file_path_1)
|
70 |
-
# documents_1 = loader.load()
|
71 |
-
# loader = PyMuPDFLoader(file_path_2)
|
72 |
-
# documents_2 = loader.load()
|
73 |
-
# print(f"Number of pages in 1: {len(documents_1)}")
|
74 |
-
# print(f"Number of pages in 2: {len(documents_2)}")
|
75 |
|
76 |
|
77 |
text_splitter = RecursiveCharacterTextSplitter(
|
@@ -80,22 +75,42 @@ def create_chunked_documents(state):
|
|
80 |
length_function = tiktoken_len,
|
81 |
)
|
82 |
combined_document_objects = []
|
83 |
-
|
84 |
dprint(state, "Chunking documents and creating document objects")
|
85 |
for document in state.documents:
|
86 |
dprint(state, f"processing documend: {document['title']}")
|
87 |
text = document["single_text_document"]
|
88 |
dprint(state, text)
|
89 |
title = document["title"]
|
|
|
90 |
chunks_document = text_splitter.split_text(text)
|
91 |
dprint(state, len(chunks_document))
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
state.add_combined_document_objects(combined_document_objects)
|
96 |
|
97 |
|
98 |
-
def create_vector_store(state):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
create_chunked_documents(state)
|
100 |
embedding_model = OpenAIEmbeddings(model=state.embedding_model)
|
101 |
|
@@ -106,4 +121,5 @@ def create_vector_store(state):
|
|
106 |
)
|
107 |
qdrant_retriever = qdrant_vectorstore.as_retriever()
|
108 |
state.set_retriever(qdrant_retriever)
|
|
|
109 |
return qdrant_retriever
|
|
|
5 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
6 |
import fitz
|
7 |
import io
|
|
|
|
|
8 |
import os
|
9 |
+
import requests
|
10 |
+
import tiktoken
|
11 |
from utilities.debugger import dprint
|
12 |
+
import uuid
|
13 |
|
14 |
def tiktoken_len(text):
|
15 |
tokens = tiktoken.encoding_for_model("gpt-4o").encode(
|
|
|
56 |
"title": title,
|
57 |
"metadata": metadata,
|
58 |
"single_text_document": single_text_document,
|
59 |
+
"document_id": str(uuid.uuid4())
|
60 |
}
|
61 |
state.add_document(document)
|
62 |
dprint(state, f"Title of Document: {title}")
|
|
|
66 |
|
67 |
def create_chunked_documents(state):
|
68 |
get_documents(state)
|
69 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
75 |
length_function = tiktoken_len,
|
76 |
)
|
77 |
combined_document_objects = []
|
|
|
78 |
dprint(state, "Chunking documents and creating document objects")
|
79 |
for document in state.documents:
|
80 |
dprint(state, f"processing documend: {document['title']}")
|
81 |
text = document["single_text_document"]
|
82 |
dprint(state, text)
|
83 |
title = document["title"]
|
84 |
+
document_id = document["document_id"]
|
85 |
chunks_document = text_splitter.split_text(text)
|
86 |
dprint(state, len(chunks_document))
|
87 |
+
|
88 |
+
for chunk_number, chunk in enumerate(chunks_document, start=1):
|
89 |
+
document_objects = Document(
|
90 |
+
page_content=chunk,
|
91 |
+
metadata={
|
92 |
+
"source": title,
|
93 |
+
"document_id": document.get("document_id", "default_id"),
|
94 |
+
"chunk_number": chunk_number # Add unique chunk number
|
95 |
+
}
|
96 |
+
)
|
97 |
+
combined_document_objects.append(document_objects)
|
98 |
state.add_combined_document_objects(combined_document_objects)
|
99 |
|
100 |
|
101 |
+
def create_vector_store(state, **kwargs):
|
102 |
+
for key, value in kwargs.items():
|
103 |
+
if hasattr(state, key):
|
104 |
+
setattr(state, key, value)
|
105 |
+
else:
|
106 |
+
print(f"Warning: {key} is not an attribute of the state object")
|
107 |
+
|
108 |
+
# Rest of your create_vector_store logic
|
109 |
+
print(f"Chunk size after update: {state.chunk_size}")
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
create_chunked_documents(state)
|
115 |
embedding_model = OpenAIEmbeddings(model=state.embedding_model)
|
116 |
|
|
|
121 |
)
|
122 |
qdrant_retriever = qdrant_vectorstore.as_retriever()
|
123 |
state.set_retriever(qdrant_retriever)
|
124 |
+
print("Vector store created")
|
125 |
return qdrant_retriever
|