import numpy as np from collections import defaultdict from typing import List, Tuple, Callable from utilities_2.openai_utils.embedding import EmbeddingModel import hashlib from qdrant_client import QdrantClient from qdrant_client.http.models import PointStruct from qdrant_client.models import VectorParams import uuid def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float: """Computes the cosine similarity between two vectors.""" dot_product = np.dot(vector_a, vector_b) norm_a = np.linalg.norm(vector_a) norm_b = np.linalg.norm(vector_b) return dot_product / (norm_a * norm_b) class QdrantDatabase: def __init__(self, embedding_model=None): self.qdrant_client = QdrantClient(location=":memory:") self.collection_name = "my_collection" self.embedding_model = embedding_model or EmbeddingModel(embeddings_model_name= "text-embedding-3-small", dimensions=1000) vector_params = VectorParams( size=self.embedding_model.dimensions, # vector size distance="Cosine" ) # distance metric self.qdrant_client.create_collection( collection_name=self.collection_name, vectors_config={"text": vector_params}, ) self.vectors = defaultdict(np.array) # Still keeps a local copy if needed def string_to_int_id(self, s: str) -> int: return int(hashlib.sha256(s.encode('utf-8')).hexdigest(), 16) % (10**8) def get_test_vector(self): retrieved_vector = self.qdrant_client.retrieve( collection_name="my_collection", ids=[self.string_to_int_id("test_key")] ) return retrieved_vector def insert(self, key: str, vector: np.array) -> None: point_id = str(uuid.uuid4()) payload = {"text": key} point = PointStruct( id=point_id, vector={"default": vector.tolist()}, payload=payload ) print(f"Inserting vector for key: {key}, ID: {point_id}") # Insert the vector into Qdrant with the associated document self.qdrant_client.upsert( collection_name=self.collection_name, points=[point] # Qdrant expects a list of PointStruct ) def search( self, query_vector: np.array, k: int=5, distance_measure: Callable = cosine_similarity, ) -> List[Tuple[str, float]]: # Perform search in Qdrant if isinstance(query_vector, np.ndarray): query_vector = query_vector.tolist() print(type(query_vector)) search_results = self.qdrant_client.search( collection_name=self.collection_name, query_vector=query_vector, # Pass the vector as a list limit=k ) return [(result.payload['text'], result.score) for result in search_results] def search_by_text( self, query_text: str, k: int, distance_measure: Callable = cosine_similarity, return_as_text: bool = False, ) -> List[Tuple[str, float]]: query_vector = self.embedding_model.get_embedding(query_text) results = self.search(query_vector, k, distance_measure) return [result[0] for result in results] if return_as_text else results async def abuild_from_list(self, list_of_text: List[str]) -> "QdrantDatabase": from qdrant_client.http import models embeddings = await self.embedding_model.async_get_embeddings(list_of_text) points = [ models.PointStruct( id=str(uuid.uuid4()), vector={"text": embedding}, # Should be a named vector as per vector_config payload={ "text": text } ) for text, embedding in zip(list_of_text, embeddings) ] self.qdrant_client.upsert( collection_name=self.collection_name, points=points ) return self