Spaces:
Running
on
Zero
Running
on
Zero
Rishi Desai
commited on
Commit
·
34c6239
1
Parent(s):
25777fe
cleanup; using HF_Home
Browse files- .env +0 -0
- README.md +2 -11
- demo.py +1 -3
- helpers.py +0 -190
- install.py +1 -2
.env
DELETED
File without changes
|
README.md
CHANGED
@@ -64,21 +64,11 @@ Using the ComfyUI workflows is the fastest way to get started. Run `python run_c
|
|
64 |
- `./workflows/FaceEmbedDist.json` for computing the face embedding distance
|
65 |
|
66 |
|
67 |
-
<!-- ## Configuration
|
68 |
-
|
69 |
-
Create a .env file in the project root directory with your API keys:
|
70 |
-
```
|
71 |
-
touch .env
|
72 |
-
echo "FAL_API_KEY=your_fal_api_key_here" >> .env
|
73 |
-
```
|
74 |
-
|
75 |
-
The FAL API key is used for face upscaling during preprocessing. You can get one at [fal.ai](https://fal.ai/). -->
|
76 |
-
|
77 |
## Gradio Demo
|
78 |
|
79 |
A simple web interface for the face enhancement workflow.
|
80 |
|
81 |
-
1. Run `python
|
82 |
|
83 |
2. Go to http://localhost:7860. You may need to enable port forwarding.
|
84 |
|
@@ -87,6 +77,7 @@ A simple web interface for the face enhancement workflow.
|
|
87 |
- Gradio demo is faster than the script because models remain loaded in memory
|
88 |
- All images are saved in `./ComfyUI/input/scratch/`
|
89 |
- Temporary files are created during processing and cleaned up afterward
|
|
|
90 |
|
91 |
### Troubleshooting
|
92 |
|
|
|
64 |
- `./workflows/FaceEmbedDist.json` for computing the face embedding distance
|
65 |
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
## Gradio Demo
|
68 |
|
69 |
A simple web interface for the face enhancement workflow.
|
70 |
|
71 |
+
1. Run `python demo.py`
|
72 |
|
73 |
2. Go to http://localhost:7860. You may need to enable port forwarding.
|
74 |
|
|
|
77 |
- Gradio demo is faster than the script because models remain loaded in memory
|
78 |
- All images are saved in `./ComfyUI/input/scratch/`
|
79 |
- Temporary files are created during processing and cleaned up afterward
|
80 |
+
- Face cropping and upscaling are not applied to the reference image; this will be added in an update.
|
81 |
|
82 |
### Troubleshooting
|
83 |
|
demo.py
CHANGED
@@ -2,8 +2,6 @@ from install import install
|
|
2 |
|
3 |
# Global variable to track if install() has been run
|
4 |
INSTALLED = False
|
5 |
-
|
6 |
-
# Check if install() has been run before calling it
|
7 |
if not INSTALLED:
|
8 |
install()
|
9 |
INSTALLED = True
|
@@ -18,7 +16,7 @@ import pathlib
|
|
18 |
import sys
|
19 |
from main import process_face
|
20 |
from PIL import Image
|
21 |
-
|
22 |
CACHE_DIR = "./cache"
|
23 |
|
24 |
# Ensure cache directory exists
|
|
|
2 |
|
3 |
# Global variable to track if install() has been run
|
4 |
INSTALLED = False
|
|
|
|
|
5 |
if not INSTALLED:
|
6 |
install()
|
7 |
INSTALLED = True
|
|
|
16 |
import sys
|
17 |
from main import process_face
|
18 |
from PIL import Image
|
19 |
+
|
20 |
CACHE_DIR = "./cache"
|
21 |
|
22 |
# Ensure cache directory exists
|
helpers.py
DELETED
@@ -1,190 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
import sys
|
6 |
-
import cv2
|
7 |
-
import base64
|
8 |
-
import aiohttp
|
9 |
-
import fal_client
|
10 |
-
sys.path.append('./ComfyUI_AutoCropFaces')
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
load_dotenv()
|
13 |
-
from Pytorch_Retinaface.pytorch_retinaface import Pytorch_RetinaFace
|
14 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
15 |
-
from transformers import CLIPProcessor, CLIPModel
|
16 |
-
import gc
|
17 |
-
|
18 |
-
|
19 |
-
CACHE_DIR = '/workspace/huggingface_cache'
|
20 |
-
|
21 |
-
os.environ["HF_HOME"] = CACHE_DIR
|
22 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
23 |
-
|
24 |
-
device = "cuda"
|
25 |
-
|
26 |
-
def clear_cuda_memory():
|
27 |
-
"""Aggressively clear CUDA memory"""
|
28 |
-
gc.collect()
|
29 |
-
torch.cuda.empty_cache()
|
30 |
-
torch.cuda.synchronize()
|
31 |
-
|
32 |
-
|
33 |
-
def load_vision_models():
|
34 |
-
print("Loading CLIP and Florence models...")
|
35 |
-
# Load CLIP
|
36 |
-
clip_model = CLIPModel.from_pretrained(
|
37 |
-
"openai/clip-vit-large-patch14",
|
38 |
-
cache_dir=CACHE_DIR
|
39 |
-
).to(device)
|
40 |
-
clip_processor = CLIPProcessor.from_pretrained(
|
41 |
-
"openai/clip-vit-large-patch14",
|
42 |
-
cache_dir=CACHE_DIR
|
43 |
-
)
|
44 |
-
|
45 |
-
# Load Florence
|
46 |
-
florence_model = AutoModelForCausalLM.from_pretrained(
|
47 |
-
"microsoft/Florence-2-large",
|
48 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
49 |
-
trust_remote_code=True,
|
50 |
-
cache_dir=CACHE_DIR
|
51 |
-
).to(device)
|
52 |
-
florence_processor = AutoProcessor.from_pretrained(
|
53 |
-
"microsoft/Florence-2-large",
|
54 |
-
trust_remote_code=True,
|
55 |
-
cache_dir=CACHE_DIR
|
56 |
-
)
|
57 |
-
|
58 |
-
return {
|
59 |
-
'clip_model': clip_model,
|
60 |
-
'clip_processor': clip_processor,
|
61 |
-
'florence_model': florence_model,
|
62 |
-
'florence_processor': florence_processor,
|
63 |
-
}
|
64 |
-
|
65 |
-
|
66 |
-
def generate_caption(image):
|
67 |
-
vision_models = load_vision_models()
|
68 |
-
|
69 |
-
# Ensure the image is a PIL Image
|
70 |
-
if not isinstance(image, Image.Image):
|
71 |
-
image = Image.fromarray(image)
|
72 |
-
|
73 |
-
# Convert the image to RGB if it has an alpha channel
|
74 |
-
if image.mode == 'RGBA':
|
75 |
-
image = image.convert('RGB')
|
76 |
-
|
77 |
-
prompt = "<DETAILED_CAPTION>"
|
78 |
-
inputs = vision_models['florence_processor'](
|
79 |
-
text=prompt,
|
80 |
-
images=image,
|
81 |
-
return_tensors="pt"
|
82 |
-
).to(device, torch.float16 if torch.cuda.is_available() else torch.float32)
|
83 |
-
|
84 |
-
generated_ids = vision_models['florence_model'].generate(
|
85 |
-
input_ids=inputs["input_ids"],
|
86 |
-
pixel_values=inputs["pixel_values"],
|
87 |
-
max_new_tokens=1024,
|
88 |
-
num_beams=3,
|
89 |
-
do_sample=False
|
90 |
-
)
|
91 |
-
generated_text = vision_models['florence_processor'].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
92 |
-
parsed_answer = vision_models['florence_processor'].post_process_generation(
|
93 |
-
generated_text, task="<DETAILED_CAPTION>",
|
94 |
-
image_size=(image.width, image.height)
|
95 |
-
)
|
96 |
-
|
97 |
-
clear_cuda_memory()
|
98 |
-
return parsed_answer['<DETAILED_CAPTION>']
|
99 |
-
|
100 |
-
|
101 |
-
def crop_face(image_path, output_dir, output_name, scale_factor=4.0):
|
102 |
-
image = Image.open(image_path).convert("RGB")
|
103 |
-
|
104 |
-
img_raw = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
105 |
-
img_raw = img_raw.astype(np.float32)
|
106 |
-
|
107 |
-
rf = Pytorch_RetinaFace(
|
108 |
-
cfg='mobile0.25',
|
109 |
-
pretrained_path='./weights/mobilenet0.25_Final.pth',
|
110 |
-
confidence_threshold=0.02,
|
111 |
-
nms_threshold=0.4,
|
112 |
-
vis_thres=0.6
|
113 |
-
)
|
114 |
-
|
115 |
-
dets = rf.detect_faces(img_raw)
|
116 |
-
print("Dets: ", dets)
|
117 |
-
|
118 |
-
# Instead of asserting, handle multiple faces gracefully
|
119 |
-
if len(dets) == 0:
|
120 |
-
print("No faces detected!")
|
121 |
-
return False
|
122 |
-
|
123 |
-
# If multiple faces detected, use the one with highest confidence
|
124 |
-
if len(dets) > 1:
|
125 |
-
print(f"Warning: {len(dets)} faces detected, using the one with highest confidence")
|
126 |
-
# Assuming dets is a list of [bbox, landmark, score] and we want to sort by score
|
127 |
-
dets = sorted(dets, key=lambda x: x[2], reverse=True) # Sort by confidence score
|
128 |
-
# Just keep the highest confidence detection
|
129 |
-
dets = [dets[0]]
|
130 |
-
|
131 |
-
# Pass the scale_factor to center_and_crop_rescale for adjustable crop size
|
132 |
-
try:
|
133 |
-
# Unpack the tuple correctly - the function returns (cropped_imgs, bbox_infos)
|
134 |
-
cropped_imgs, bbox_infos = rf.center_and_crop_rescale(img_raw, dets, shift_factor=0.45, scale_factor=scale_factor)
|
135 |
-
|
136 |
-
# Check if we got any cropped images
|
137 |
-
if not cropped_imgs or len(cropped_imgs) == 0:
|
138 |
-
print("No cropped images returned")
|
139 |
-
return False
|
140 |
-
|
141 |
-
# Use the first cropped face image directly - it's not nested
|
142 |
-
img_to_save = cropped_imgs[0]
|
143 |
-
|
144 |
-
os.makedirs(output_dir, exist_ok=True)
|
145 |
-
cv2.imwrite(os.path.join(output_dir, output_name), img_to_save)
|
146 |
-
print(f"Saved: {output_name}")
|
147 |
-
return True
|
148 |
-
|
149 |
-
except Exception as e:
|
150 |
-
print(f"Error during face cropping: {e}")
|
151 |
-
return False
|
152 |
-
|
153 |
-
async def upscale_image(image_path, output_path):
|
154 |
-
"""Upscale an image using fal.ai's RealESRGAN model"""
|
155 |
-
fal_client = FalClient()
|
156 |
-
|
157 |
-
# Read and encode the image
|
158 |
-
with open(image_path, "rb") as image_file:
|
159 |
-
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
|
160 |
-
data_uri = f"data:image/jpeg;base64,{encoded_image}"
|
161 |
-
|
162 |
-
try:
|
163 |
-
# Submit the upscaling request
|
164 |
-
handler = await fal_client.submit_async(
|
165 |
-
"fal-ai/real-esrgan",
|
166 |
-
arguments={
|
167 |
-
"image_url": data_uri,
|
168 |
-
"scale": 2,
|
169 |
-
"model": "RealESRGAN_x4plus",
|
170 |
-
"output_format": "png",
|
171 |
-
"face": True
|
172 |
-
},
|
173 |
-
)
|
174 |
-
result = await handler.get()
|
175 |
-
|
176 |
-
# Download and save the upscaled image
|
177 |
-
image_url = result['image_url']
|
178 |
-
async with aiohttp.ClientSession() as session:
|
179 |
-
async with session.get(image_url) as response:
|
180 |
-
if response.status == 200:
|
181 |
-
with open(output_path, 'wb') as f:
|
182 |
-
f.write(await response.read())
|
183 |
-
return True
|
184 |
-
else:
|
185 |
-
print(f"Failed to download upscaled image: {response.status}")
|
186 |
-
return False
|
187 |
-
|
188 |
-
except Exception as e:
|
189 |
-
print(f"Error during upscaling: {e}")
|
190 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
install.py
CHANGED
@@ -4,9 +4,8 @@ import os
|
|
4 |
BASE_PATH = "./"
|
5 |
COMFYUI_PATH = os.path.join(BASE_PATH, "ComfyUI")
|
6 |
MODEL_PATH = os.path.join(COMFYUI_PATH, "models")
|
7 |
-
CACHE_PATH = "/data/huggingface_cache"
|
8 |
|
9 |
-
os.
|
10 |
os.makedirs(CACHE_PATH, exist_ok=True)
|
11 |
|
12 |
|
|
|
4 |
BASE_PATH = "./"
|
5 |
COMFYUI_PATH = os.path.join(BASE_PATH, "ComfyUI")
|
6 |
MODEL_PATH = os.path.join(COMFYUI_PATH, "models")
|
|
|
7 |
|
8 |
+
CACHE_PATH = os.getenv('HF_HOME')
|
9 |
os.makedirs(CACHE_PATH, exist_ok=True)
|
10 |
|
11 |
|