File size: 956 Bytes
b9ddd64
 
 
 
 
 
 
 
 
b8d7a76
 
 
b9ddd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image']

# %% app.ipynb 2
from fastai.vision.all import *
import PIL
import pathlib
import gradio as gr


def is_cat(x): return x[0].isupper()

# %% app.ipynb 4
# Check if you are on a Windows system
if sys.platform == 'win32': 
    # Set the base PosixPath to WindowsPath
    pathlib.PosixPath = pathlib.WindowsPath
pathlib.PosixPath

# %% app.ipynb 5
learn =load_learner('cat_dog_model.pkl')

# %% app.ipynb 7
categories= ('Dog', 'Cat')

def classify_image(img):
    pred,idx, probs = learn.predict(img)
    return dict(zip(categories, map(float,probs)))

# %% app.ipynb 9
image = gr.Image(height=192,width=192)
label = gr.Label()  
examples =['dog.jpg', 'cats.jpeg', 'dogs.png']

intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch(inline=False)