File size: 4,790 Bytes
d73301b 88a3311 5c0ed2c d73301b 8423e33 d73301b fac2e01 d73301b 88a3311 4c6f550 2b469d7 4c6f550 4caae8a 401fd9e d73301b 401fd9e e06181a 5c0ed2c 4caae8a 5c0ed2c e06181a 5c0ed2c 4caae8a 5c0ed2c 04c67c9 5c0ed2c b709a2a 45070c2 8423e33 e06181a 4caae8a 8423e33 e06181a 8423e33 e06181a d73301b 8423e33 d73301b 5c0ed2c d73301b 9f420c3 fac2e01 f9d0a7f 9f420c3 b1bcf24 d73301b b1bcf24 d73301b e55d440 f9d0a7f 844b5a5 e55d440 d73301b 5c0ed2c 4c6f550 401fd9e 09cdf11 f9d0a7f 9e90c80 5c0ed2c b1bcf24 0560d17 5c0ed2c d73301b 9f420c3 88a3311 4c6f550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import rembg
from rembg import remove, new_session
from PIL import Image
import numpy as np
import logging
import time
# Set up logging
logging.basicConfig(level=logging.INFO)
# Log the version of rembg
logging.info(f"rembg version: {rembg.__version__}")
# Define model options with separate names and descriptions
MODEL_OPTIONS = {
"": "Select a model",
"u2net": "A pre-trained model for general use cases (default)",
"isnet-general-use": "A new pre-trained model for general use cases",
"isnet-anime": "High-accuracy segmentation for anime characters",
"silueta": "A reduced-size version of u2net (43MB)",
# "sam_prompt": "A pre-trained model for any use case (Segment Anything Model)", # remove sam model
"unet": "Lightweight version of u2net model",
"u2netp": "A lightweight version of u2net model",
"u2net_human_seg": "A pre-trained model for human segmentation",
"u2net_cloth_seg": "A pre-trained model for cloth parsing in human portraits",
}
def hex_to_rgba(hex_color):
hex_color = hex_color.lstrip('#')
if len(hex_color) == 6:
hex_color += 'FF' # Add full opacity if no alpha is provided
return tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4, 6))
def remove_background(input_image, bg_color, model_choice, alpha_matting, post_process_mask, only_mask):
try:
# Extract the model name from the choice
model_name = model_choice.split(' | ')[0] if model_choice else ""
# Set up the session with the chosen model, or None if no model is selected
session = new_session(model_name) if model_name else None
# Convert hex color to RGBA tuple
bg_color_rgba = hex_to_rgba(bg_color) if bg_color else None
# Prepare additional options
remove_kwargs = {
"session": session,
"bgcolor": bg_color_rgba if bg_color_rgba else None,
"alpha_matting": alpha_matting,
"post_process_mask": post_process_mask,
"only_mask": only_mask
}
# Add alpha matting parameters if enabled
if alpha_matting:
remove_kwargs.update({
"alpha_matting": True,
"alpha_matting_foreground_threshold": 270,
"alpha_matting_background_threshold": 20,
"alpha_matting_erode_size": 11
})
logging.info(f'Model name={model_name}')
logging.info(remove_kwargs)
# Convert PIL Image to numpy array
input_array = np.array(input_image)
# Use the remove function
if session or bg_color_rgba:
output_array = remove(input_array, **{k: v for k, v in remove_kwargs.items() if v is not None})
else:
output_array = remove(input_array) # Use the default remove function
logging.info("Background removed")
# Convert numpy array back to PIL Image
output_image = Image.fromarray(output_array)
# Convert to RGB mode if necessary
if not only_mask and output_image.mode != 'RGB':
output_image = output_image.convert('RGB')
logging.info("Converted to RGB mode")
# Save the output image to a temporary file
# Generate a unique timestamp for the output file name
timestamp = time.strftime("%Y%m%d-%H%M%S")
output_path = f"output_remove_background_{timestamp}.png"
output_image.save(output_path)
logging.info(f"Saved output image {output_path}")
return output_image, output_path
except Exception as e:
logging.error(f"An error occurred: {e}")
return None, None
examples = [
['scifi_man1.jpg']
]
# Gradio interface
iface = gr.Interface(
fn=remove_background,
inputs=[
gr.Image(type="pil"),
gr.ColorPicker(label="Background Color", value=None),
gr.Dropdown(
choices=[""] + [f"{k} | {v}" for k, v in MODEL_OPTIONS.items() if k != ""],
label="Model Selection",
value="",
type="value"
),
gr.Checkbox(label="Enable Alpha Matting", value=False),
gr.Checkbox(label="Post-Process Mask (post process the mask to get better results)", value=False),
gr.Checkbox(label="Only Return Mask ", value=False)
],
outputs=[
gr.Image(type="pil", label="Output Image"),
gr.File(label="Download the output image")
],
examples=examples,
title="Advanced Background Remover v2.7",
description="Upload an image to remove the background. Customize the result with different options, including background color, model selection, alpha matting, and more.",
allow_flagging="never",
)
if __name__ == "__main__":
iface.launch() |